
 i

THE DESIGN OF A MULTIMEDIA
ADAPTIVE INTERFACE FOR PROCESS

CONTROL USING A MULTI-AGENT
APPROACH

by

Mr C.I.J. Khalil

A thesis submitted in partial fulfilment of the
requirements for the degree of

Ph. D.

Loughborough University

2001

 2

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 12
INTRODUCTION... 12
WHY MIGHT ADAPTATION BE IMPORTANT? .. 12
THESIS ORGANISATION ... 15
CONTRIBUTION OF THE AUTHOR TO THE WORK REPORTED ... 17

CHAPTER 2: ADAPTIVE SYSTEMS ... 19
INTRODUCTION... 19
WHY IS THERE A NEED FOR ADAPTIVE SYSTEMS? ... 19
TECHNICAL DEFINITIONS OF ADAPTIVITY .. 23
GOALS OF AN ADAPTIVE SYSTEM ... 24
COMPONENTS OF AN ADAPTIVE SYSTEM .. 25
EXAMPLES OF THE ADAPTIVE SYSTEM CONCEPT .. 32
ADAPTIVE SYSTEM COMMONALITIES .. 34
EXAMPLES OF WEB BASED ADAPTIVE USER INTERFACES ... 34
EXAMPLES OF MORE COMPLEX ADAPTIVE SYSTEMS .. 36
THE EXAMINATION AND EVALUATION OF ADAPTIVE SYSTEMS AND METHODS FOR
ASSESSING THEM. .. 41
INDEPENDENT VARIABLES .. 44
CONCLUSION.. 52

CHAPTER 3: PROCESS CONTROL INTERFACES... 54
INTRODUCTION... 54
PROCESS CONTROL WORK DOMAIN .. 54
THE PROCESS ... 55
PROCESS AUTOMATION .. 56
COMMUNICATING PROCESS INFORMATION TO THE OPERATOR. .. 58
HUMAN ERRORS IN PROCESS CONTROL ... 60
THE NATURE OF OPERATOR ERRORS .. 62
RASMUSSEN’S ABSTRACTION HIERARCHY ... 67
USING MULTI-MEDIA IN PROCESS CONTROL INTERFACES .. 74
CONCLUSION.. 75

CHAPTER 4: SOFTWARE AGENTS ... 77
WHAT IS AN AGENT? .. 77
WHY HAVE AGENTS? ... 78
AGENTS CLASSED BY APPLICATION AREA .. 82
INTERFACE AGENTS. ... 84
INFORMATION AGENTS ... 86

 3

COMPUTATIONAL AGENTS .. 86
FACILITATOR AGENTS .. 87
DESCRIBING AGENTS IN TERMS OF THEIR PROPERTIES .. 87
DESCRIBING AN AGENT ALONG THE PROPERTY AXES ... 94
CRITIQUE OF EXISTING AGENT APPLICATIONS ... 94
INTERFACE AGENTS.. 95
COMPUTATIONAL AGENTS .. 108
FACILITATOR AGENT .. 109
SPECIAL ISSUES RELATING TO INTERFACE AGENTS - COMPETENCE, TRUST AND LIMITATIONS
OF AUTONOMY ... 110
THE PURPOSE OF AN AGENT AND THE ISSUE OF DELEGATION .. 113
LOCUS OF CONTROL AND AGENT PURPOSE. ... 115
WHAT IS THE PURPOSE OF AGENTS .. 115
DEALING WITH THE LOCUS OF CONTROL.. 116
A NEW AGENT DEFINITION: .. 117
CONCLUSION.. 119

CHAPTER 5: MULTI-AGENT SYSTEMS AND PROCESS CONTROL 121
WHY USE MULTI-AGENT SYSTEMS IN PROCESS CONTROL? ... 121
IMPLEMENTATION ISSUES ... 124
COMMUNICATION ... 125
INTERACTION: AN INTRODUCTION TO SPEECH-ACT THEORY... 128
HETEROGENEOUS COLLECTIONS OF AGENTS. .. 131
CONCLUSION.. 132

CHAPTER 6: THE WHY, AND HOW, OF ADAPTATION 134
INTRODUCTION... 134
THE NATURE OF ADAPTATION .. 134
MORE DETAILED DISCUSSION OF POSSIBLE ADAPTATIONS. .. 141
THE DEVELOPMENT OF A HUMAN FACTORS DATABASE .. 145
USER INTERFACE DESIGN GUIDELINES .. 145
DETERMINING WHAT GENERAL FORM OF MEDIUM IS APPROPRIATE FOR A PARTICULAR
CONTEXT ... 147
THE VISUAL MEDIUM ... 149
CHOICE OF STATIC “V” DYNAMIC MEDIA .. 151
RE-ENFORCEMENT. .. 152
COLOUR CODING APPLICATIONS ... 152
PRESENTATION AND FORMATTING OF AUDITORY INFORMATION 153
MEDIA COMBINATION & ORDERING .. 157
CONSISTENCY MEASURES ... 158

 4

CHAPTER 7: AGENT SOFTWARE DEVELOPMENT ISSUES: THE WAY
FORWARD ... 161

INTRODUCTION... 161
CHOICE OF SOFTWARE LANGUAGE .. 162
PROBLEMS WITH JAVA. .. 163
PERFORMANCE ASSESSMENT: JAVA VS. C++. ... 164
JUST-IN-TIME AND NATIVE COMPILERS ... 168
NATIVE/STATIC COMPILERS. ... 174
OTHER PERFORMANCE ISSUES:.. 181
CONCLUSION. ... 183
WHICH VIRTUAL MACHINE IS APPROPRIATE? ... 183
CONCLUSION. ... 185
INTEGRATED DEVELOPMENT ENVIRONMENTS (IDE) .. 185
MULTI-AGENT TOOLKITS. .. 186
CONCLUSION.. 187

CHAPTER 8: CONCEPTUAL ARCHITECTURE ... 190
INTRODUCTION... 190
CONCEPTUAL DESIGN ... 190
DESIGN PRINCIPLES ADOPTED IN AMEBICA .. 191
ADAPTATION PRINCIPLES - FLEXIBLE MAPPINGS AND ON-THE-FLY ADAPTATION 195
THE AGENTS AND THEIR FUNCTIONS ... 197
THE PROCESS MODEL AGENT ... 209
OVERVIEW OF THE AMEBICA REASONING PROCESS ... 215
CONCLUSION.. 222

CHAPTER 9: THE ADAPTATION AGENTS IN DETAIL: MECHANISMS AND
RATIONALE .. 224

INTRODUCTION... 224
THE INTERNAL ARCHITECTURE OF THE MEDIA AGENTS .. 225
PRESENTATION AGENT: MAINTAINING AN UPDATED KNOWLEDGE BASE OF INTERFACE
USAGE. .. 228
SPECIFIC EXAMPLES. .. 234
THE MEDIA ALLOCATOR AGENT: FINDING THE BEST LOCATIONS AND REPRESENTATION 237
SOME TYPICAL EXAMPLES OF MEDIA ALLOCATION ACTIVITY 240
CO-ORDINATION PROCESS BETWEEN THE MEDIA ALLOCATOR AGENT, THE PRESENTATION
AGENT AND THE RENDERING RESOLUTION AGENT ... 246
INTELLIGENT PLACEMENT OF RELATED WINDOWS: THE SATELLITE-SOURCE RELATION . 248
EXAMPLE SOURCE/SATELLITE INTERACTION FOR LOCATION POSITION CONSTRAINTS
(BELOW, ABOVE, RIGHT, LEFT)... 249

 5

EXAMPLE SOURCE/SATELLITE INTERACTION FOR NEAR POSITION CONSTRAINTS (BELOW,
ABOVE, RIGHT, LEFT) ... 251
MEDIA ALLOCATOR AGENT: OTHER INTERFACE MANIPULATIONS - THE PARENT/CHILD
RELANTIONSHIP. .. 253
EXAMPLE OF PARENT/CHILD ADAPTIVE BEHAVIOUR ... 254
THE AFTER ZOOM/TRANSLATE EFFECTS.. 256
AMEBICA CONSISTENCY .. 256
AFFECT OF OPERATOR INDUCED CHANGES AT THE AMEBICA INTERFACE.................... 258
OTHER ARCHITECTURAL PERFORMANCE CONSTRAINTS ... 263
MULTIPLE EVENTS ARRIVING AT HIGH FREQUENCY .. 265
CONCLUSION.. 269

CHAPTER 10: EXPERIMENTAL STUDY: THE USE OF THE ADAPTIVE
PRESENTATION SYSTEM WITHIN THE DOMAIN OF ELECTRICITY
NETWORK MANAGEMENT ... 271

THE FINAL AMEBICA SYSTEM .. 271
BRIEF DESCRIPTION OF THE ELECTRICAL NETWORK MANAGEMENT EXEMPLAR 274
THE ENM SCENARIO .. 275
BASIC REQUIREMENTS .. 275
THE ENM SCENARIO IMPLEMENTATION DETAILS .. 278
THE ENM SCENARIO – MOVING STORM .. 279
THE ADAPTATION MATRIX ... 288
MATRIX 2: ALARM HANDLING .. 292
THE USABILITY RESULTS .. 295
OVERVIEW OF EVALUATION TECHNIQUES ... 296
USABILITY EVALUATION METHODOLOGY .. 297
ACTUAL PROCEDURES .. 298
USE CASES... 301
USABILITY EVALUATION .. 302
TEST PLAN ... 303
RESULTS OF THE WORKSHOPS .. 304
QUALITATIVE RESULTS ... 311
CONCLUSIONS .. 314

CHAPTER 11: CONCLUSIONS AND RECOMMENDATIONS 315
INTRODUCTION... 315
GENERAL SYSTEM OVERVIEW... 318
IMPLEMENTATION ISSUES ... 324
OVERALL CONCLUSION .. 330
FUTURE WORK ... 331

APPENDIX A: INTEGRATED DEVELOPMENT ENVIRONMENTS 352

 6

JBUILDER 2 .. 352
ASYMETRIX SUPERCEDE ... 353
SYMANTEC VISUAL CAFE ... 354
COMPARISON OF JAVA ID E ’S.. 355
CONCLUSION.. 356

APPENDIX B: AGENT TOOLKITS ... 359
AGENT BUILDER .. 359
JAFMAS ... 361
JATLITE .. 362
IBM-ABE ... 363
LALO ... 364
AGENT X ... 365
GYPSY ... 366
JACK AGENT TOOLKIT .. 367
KAFKA AGENT LIBRARY ... 368
VIA AGENTS. ... 370
OBJECT SPACE VOYAGER ... 371
BOND DISTRIBUTED OBJECT SYSTEM .. 372
OTHER AGENT TOOLKITS. ... 374

APPENDIX C: USABILITY RESULTS .. 376
RESULTS OF THE WORKSHOPS .. 376

 7

LIST OF FIGURES

Figure 1 Overview of an adaptive system...25
Figure 2 The Cicero Adaptive System ..39
Figure 3 A learning curve showing the percentage accuracy of a personalized user model46
Figure 4 Comparing models ...48
Figure 5 The time taken to repair a schedule as a function of task difficulty51
F igure 6 R asm ussen ‘s (1986) D ecision L adder ..66
Figure 7 Vicente (1991) Ecological Process Display ...72
Figure 8 Agent Properties ..94
Figure 9 Magic Cap for Windows Adaptation Characteristics ...97
Figure 10 Microsoft Agent Adaptation Characteristics ..98
Figure 11 Web Browser Intelligence Adaptation Characteristics ... 101
Figure 12 Intel Pattern Recognition Agent Adaptation Characteristics 102
Figure 13 LiveAgent Adaptation Characteristics .. 104
Figure 14 Waldo The Web Wizard Adaptation Characteristics .. 106
Figure 15 Firefly Adaptation Characteristics ... 108
Figure 16 Jini Adaptation Characteristics .. 109
Figure 17 Ozro Negotiate Adaptation Characteristics ... 110
Figure 18 Diagram Showing The Locus Of Control At The Various Stages of Agent Operation

 .. 117
Figure 19 Use Of Service Level Agreements .. 118
Figure 20 Modularity + Decentralisation = Changeability .. 123
Figure 21 The Triggers in the Adaptation Matrix ... 138
Figure 22 Suggested adaptive functions in various conditions ... 139
Figure 23 Overview of Information Types and Related Selection Rules (SR) 147
Figure 24: The Operation of the Java Virtual Machine .. 169
Figure 25: The Operation of the Just In Time Compiler ... 170
Figure 26 Java Thread Performance .. 182
Figure 27 Stream Architecture .. 192
Figure 28 Flexible Mapping... 196
Figure 29 Media Agent Streaming .. 197
Figure 30 The Agent Streaming Architecture ... 199
Figure 31: A SCHEMATIC, with representation type GRID ... 203
Figure 32 Different Available Representations For A Transformer .. 206
Figure 33 Overall System Context.. 216
Figure 34 An Example Set of Agent Interactions .. 220
Figure 35 The Media Agent Internal Mechanism ... 225
Figure 36 Representation space Illustration .. 231
Figure 37 Screen usage limited by edge of screen .. 234

 8

Figure 38 Showing Representation space when surrounded on 4 sides 235
Figure 39 The case of an irregular shape. .. 236
Figure 40 Representation Space Example ... 243
Figure 41 Source/Satellite Relationship .. 251
Figure 42 Source/Satellite Relationship For Near Constraint ... 252
Figure 43 Children Representations Outside Of Visible Area .. 255
Figure 44 Children Outside of Visible Area .. 255
Figure 45 Sequence of Events Leading to Media Agent Instantiation and Operator Request For

Adaptation ... 261
Figure 46 Adaptive System Prototype Contributions .. 271
Figure 47 Alarmed substation ... 280
Figure 48 Substation H with detailed window .. 281
Figure 49 Critical alarm in B, not acknowledged .. 282
Figure 50 Critical Alarm not acknowledged .. 283
Figure 51 Critical alarm acknowledged .. 284
Figure 52 WEB cam utilisation ... 285
Figure 53 Space layout management (1) ... 286
Figure 54 Space layout management (2) ... 287
Figure 55 Resizable alarm windows ... 288

 9

LIST OF TABLES

Table 1 Inca Result ..41
Table 2 Functional Evaluation of Audio Signals ... 156
Table 3 Java Vs. C++ Performance Figures ... 165
Table 4: Java Vs. C++ Program Size .. 167
Table 5: Performance Figures for HPJ Compiler .. 174
Table 6: Compiling Pros and Cons ... 180
Table 7: Comparison of Virtual Machines ... 184
Table 8 A SCHEMATIC, with representation type LIST ... 203
Table 9 Showing Horizontal and Vertical Priorities for Representation space A 232
Table 10 Showing Expansion Spaces for Representation space A ... 233
Table 11 AMEBICA Prototype Contributions... 273
Table 12 ENM Adaptation Matrix ... 289
Table 13 ENM Alarm Acquisition Matrix... 290
Table 14 ENM Alarm Handling Matrix .. 292
Table 15 ENM Unsupplied Grid Areas Matrix .. 294
Table 16 Expert Evaluators .. 296
Table 17 ENM Expert Participants ... 300
Table 18 Criteria for evaluation of the prototype ... 302
Table 19 Estimated resources for various parts of the evaluation .. 303
Table 20 Workshop Results .. 306
Table 21 Evaluation Checklist .. 306
Table 22 Evaluation Conclusions ... 309
Table 23 ENM Workshop General Questions ... 310
Table 24 ENEL General Questions .. 310
Table 25: Output File Sizes of Sample Java Application .. 355
Table 26: Compile Times for Native Compiler ... 356

 10

ACKNOWLEDGMENTS

I am indebted to:

 Professor James Alty for his patience and wonderful advice.

 My parents for always providing me with support and encouragement

 EPSRC and ESPRIT for funding me.

 The AMEBICA project partners for providing me with a platform for my work.

 All my friends who had to put up with me.

 11

QUOTATION

“T he O utcom e of any serious research can only be to m ak e tw o questions grow w here only one ex isted before.”

Thorstein Bunde Veblen (1857-1929) US Social Scientist. The Place of Science in Modern
Civilisation.

 12

C h a p t e r 1

INTRODUCTION

Introduction

This thesis develops an approach to improving the representation, form and timeliness of data in

a complex process control interface. In traditional interfaces, a mapping is made at design time

between the process parameters and an appropriate rendering at the interface. This mapping is usually

the best all-purpose mapping under a set of general constraints. It is not, however, the only

mapping – others may have been discarded which might have represented a better mapping

under a different set of constraints. In the general case of the system functioning under normal

conditions, the general mapping may be appropriate in most instances. However, if the process

moves into a disturbed state, one of the other discarded mappings may be more appropriate for

the new conditions. The goal of this thesis is to investigate if these other mappings can be

implemented in a flexible mapping system, so that an adaptive system can make a decision on

which mapping to use at run-time, based on the current state of process, the environment, the

actions of the operator team, and access to a human factors database. Flexibility, for example, has

been identified as on e of Sh ackel‘s (Sh ackel 1990) requirem en ts fo r good usab ility.

Why might Adaptation be Important?
In the modern control room, the traditional hard-desk approach has been replaced by a soft-desk

approach (Dicken 1999). In this new approach, the operators monitor plant conditions on a

large computer monitor, or over multiple monitors, but are usually unable to view all the process

information simultaneously (which used to be possible in earlier systems through the use of

 13

mimic displays). The operator must therefore switch between different views as appropriate. A

common type of representation, used in process displays, is the Piping and Instrumentation

(P&I) diagram, which, whilst effective in communicating the relationships between elements, can

present problems for the operators:

 The diagram is mainly concerned with the topology of the plant. Hence higher-level goals

are not usually immediately available within the display.

 Typically a one-sensor-one-representation approach is generally used, so operators have

to deduce the overall process state from an amalgamation of several individual indicators.

 The process diagram is often too large to be represented on a single display, and must

therefore be spread over a number of monitors. This means the operator has to often

hunt for the appropriate information over several screens, or abstract hierarchies.

 Automated systems have introduced many extra complexities for the operators. Before

the operator needed to monitor, understand and reason about physical forms and

functions in the process. Now they need to maintain an accurate view of the process at a

higher level of abstraction.

The above problems originate because of a lack of flexibility at run-time (Shackel 1990). Of

course the operators can use various functions, such as zoom and translate to adjust the display

and they can demand more detailed information about a particular sub-function. However, the

responsibility for doing this is laid totally on the operator and if the operators have missed some

important process malfunction, or are persisting in following an erroneous logical path, the

system cannot help them. A more adaptive system could assist the operators at run-time by

accentuating the display of particular measurements, by tuning the display to show relevant areas

of concern, or by forcing reappraisals of situations by presenting higher level deductions and

predictions.

It is the aim of this thesis to provide a degree of adaptability at run-time in the selection and

representation of bandwidth limited information to operators. The approach will hopefully

 14

ensure that the main presentation parameters of form, location, and modality correspond to the

contents and nature of relevant information. It is hoped that this will lead to higher predictability

of important process occurrences, less information searching, less screen cluttering, quicker

response times and generally improved operator effectiveness

The proposed interface will introduce an element of system adaptability into a highly complex

process control interface. In normal circumstances, it is envisaged that very little adaptability will

be required at the interface. Indeed, since the operators are highly trained, expert users, any

unjustified adaptation may well hinder their effectiveness. However, when the system moves into

a disturbed state, the operators may benefit from a pro-active alarm handler. It is well known

that such a shift is frequently accompanied by alarm flood (Bransby & Jenkinson 1998), and

consequent operator information overload. In such situations, by assigning incoming alarm

signals with levels of importance, using knowledge of the current environment, by understanding

the state of the operators and human factors presentation heuristics, the proposed system may be

able to select the most appropriate mapping. Such an appropriate mapping should enable the

most salient information to be presented to the operators in a more effective way at the most

appropriate time.

It is hoped that the adaptive system will bring the following advantages:

 Redundancy: Multimedia often communicates through more than one sensory channel.

This allows the system to exploit the natural human ability to multitask.

 Accentuation of critical data: By highlighting and accentuating representations of the most

critical data the system can draw th e operator‘s attention fro m less im portan t data. B y

guiding the operator in this way it is hoped that handling of dangerous situations can be

improved

 Appropriate Levels of Abstraction in the Interface: An adaptive system brings a greater degree

o f flexib ility to th e interface. Info rm ation o verlo ad can cause the operator to ―h unt‖ for

 15

appropriate information through several hierarchical layers of interface. The adaptive

system has the ability to abstract away unnecessary and irrelevant data, giving the

operator are clearer view of the current problem. Information can be selective displayed

in such a way that only salient information is displayed to a degree in line with its

importance.

 Improved Attention Getting: Since time is a scarce resource for process operators, particularly

in critical situations, they are required to deal with information on a basis of priority. This

is, of course, the reason why alarm systems feature prominently in most control rooms.

However, more present day visual and audio alarms only provide a coarse gradation of

the severity of the event that triggered them. An adaptive multimedia system may be used

to ensure that information is brought to the o perato r‘s attention in a tim ely fash ion .

Critical information can, to a much greater extent, be presented in forms, which are more

tailored to the process situation that is developing. Customised audio or spoken messages

as well as visual animations, can all be used to attract the attention of the operator. Thus

the intrusiveness of the alarm can be related to its severity in a more flexible way.

 Spatial Adaptation: An adaptive system can organise the interface so that related data is

grouped together, and allow the optimum amount of information to be displayed in

clearest possible format. Avoiding windows overlapping allows the operator to have a

clear un derstan din g o f w h at is h ap pen in g at the interface w itho ut ―losin g‖ data w h en it is

obscured or hidden.

Thesis Organisation
Chapter 2 provides an overview of adaptive systems in general. It examines why adaptive

systems are useful and the goals and form an adaptive system should have. It then examines the

general structure an adaptive system should take, and the types of models a system should

maintain in order to be able to adapt in an appropriate fashion. Finally, the chapter examines

 16

how these models have been used in existing adaptation system and how adaptive systems can be

evaluated.

Chapter 3 examines the current state of process control interfaces. An examination is made of

the current problems with process interfaces, and suggests how such problems may be tackled by

the use of multimedia principles.

Chapter 4 examines the technology of Software Agents and why they are appropriate for use in

an adaptive system. It looks at the advantages agents provide, and the different types of agents

that are in existence. Then, a review of current agent technology is undertaken to determine

which types of agents are most appropriate for an adaptive system. Finally, the chapter looks at

th e difficult prob lem of locus of contro l. It arrives at a m etho d for determ in in g an agent‘s degree

of responsibility so that it does not overstep its authority to the detriment of the operators and

their confidence in it.

Chapter 5 looks at how agents can be combined into an effective multi-agent system, for use in

the process control domain. It examines the benefits of a multi-agent approach and the relative

advantages that such an approach would offer for an adaptive system. The chapter then looks at

some of the important implementation issues involved in building a multi-agent system

Chapter 6 discusses the WHY and HOW of adaptation. It examines the concept of adaptation

and proposes the adoption of an Adaptation Matrix to describe the broad principles of why

adaptation should take place and what should trigger it. It also examines how multimedia

heuristics can be applied to make presentations at the interface clearer. It then describes a set of

guidelines and usage rules that can be applied to the adaptive system to ensure that it will always

try and select the most appropriate representation, with the correct parameters at the right time.

Chapter 7 reviews the different technologies required to built an adaptive, multi-agent system. A

detailed review is provided of agent technologies, coding technologies, code optimisation

 17

techniques and interface development tools. A recommended set of tools and system

configuration options is provided.

C h ap ter 8 p ro vides an o verview o f the p ropo sed adaptive system ‘s con ceptual arch itecture. It

describes the founding principles on which the system is based, and describes the nature of the

system. It examines the roles of the agents within the system and describes precisely how they

interact.

Chapter 9 gives a more detailed view of the core reasoning processes employed by the

architecture to drive adaptation. The main reasoning agents are examined, and the process by

which they decide upon the form of adaptation employed by the system, is described. An

overview is given of how the adaptive system relates to process control problems.

Chapter 10 demonstrates a scenario employed on the adaptive system to illustrate its capabilities.

This is then followed by some usability results obtained from testing the system on real

operators, and experts.

Chapter 11 critiques the successes gained from building the prototype system; it also looks at the

system ‘s lim itation s. T h e successes an d limitations of the actual prototype system built are

detailed and lessons drawn. The problems encountered when constructing the system are also

examined. The thesis concludes with a summary and suggestions for future work.

Contribution of the Author to the Work Reported
AMEBICA is a complex system and the design and development work was spread over a

number of contributors in different commercial organisations. The author made a very significant

contribution to the overall work described in the subsequent pages. A detailed analysis of the

autho r‘s con trib ution w ill b e fo un d at the b eginn in g o f C h apter 10. It is left un til th is ch apter

because it is only at this juncture that the whole concept of AMEBICA can be fully appreciated

an d the author‘s contrib ution clearly described.

 18

 19

C h a p t e r 2

ADAPTIVE SYSTEMS

Introduction
Adaptive Intelligent Multimedia Presentation Systems can be characterised by their capability for

―design in g presentation s th at express in form atio n usin g a com b in ation of availab le presentatio n

techniques and media, in a way which achieves the required communicative purposes and

supports users in perfo rm in g their tasks‖ (R oth 1993). In other w ords, th ey are cap ab le of

dynamically adapting their behaviour to the requirements of users, allowing users to make

improved communication decisions at run-time (Dietrich et al 1993),

Why Is There A Need For Adaptive Systems?
Computer applications can be difficult to use and even though the procedures for using them

have been learnt, they may still be easily forgotten. As the number of computer applications and

different delivery platforms proliferate, and the number of users who need to use various

computer applications in their daily work continues to grow, the chances of serious user

misunderstandings at the interface have increased. It is even the case that experienced users

h ave fo un d them selves bew ildered w ith th e so ftw are industry‘s p redilection fo r developm ent of

new features, bug-fixes and production of n ew (i.e. slightly different an d ‗im pro ved‘) versions

(T h im b leb y, 1990b). C on stant ―im pro vem ent‖ o ften results in an interface com p lexity th at is

constantly in a state of flux. This has been particularly true in the process control domain where

the move from hard desks to soft desks, has led to a glut of new features and increasingly

complicated interfaces.

 20

The idea that computer applications should be capable of adapting their interfaces to match the

needs either of individuals or of different classes of users is an apparently attractive, one (Benyon

& Murray 1993). Adaptive computer interfaces are therefore not new, and have been discussed

over the years through a number of advocates (Edmonds 1981; Innocent 1982; Zissos & Witten,

1985). Other useful reviews are provided by (Norcio & Stanley 1989). Early applications of the

adaptive system concept, however, did not live up to expectations and often presented designers

with problems of a greater complexity than those encountered in non-adaptive solutions. There

was also a fear that adaptation could introduce its own complexity and present the user with

inconsistent interfaces.

These early attempts to create adaptive systems were certainly hampered by a lack of processing

and I/O power, and it is only recently, now that powerful computers have become available, that

consideration of how to build such systems has become of interest again. The development of

multi-agent systems (Maes 1991; Laurel 1990) and intelligent interfaces (Chignell & Hancock

1988) has also focused attention on adaptive systems.

Although many design solutions are possible, computer applications tend to be based on one

chosen design solution that is inevitably better suited to some users than others, and whose

ch o ice m ay be very dep endent upon the design ers‘ experience. It is a contention of this thesis

that the usability of many systems could be improved if they were able to offer a different set of

design solutions to match the diversity of user populations and run-time dependent interfaces

generated in context.

A particular class of users to whom adaptability is important is what are termed Discretionary Users.

Discretionary Users are users who can solve their problems, if necessary, without resorting to the

use of a computer application (even though it may be less efficient). Such users must be

persuaded, or otherwise enticed, into making use of the computer facilities. Even when enticed

into using the system, such users tend to stick with what they know, and are usually not

adventurous in seeking out new or improved ways of doing things. They often become reliant on

 21

the initial system features used. This type of behaviour is often true of Novice Users as well. For

such users there is a need to provide effective methods for graduating to more efficient uses of

the application.

Some designers do, of course, implement systems that can cater for different users,

environments, working practices and different markets. Such personalisation is implemented

th ro ugh th e use o f ‗custom isin g‘ facilities or ‗m acro s‘. T he prob lem w ith such appro aches is that

the users must learn these customisation features, and they detract from their primary goal of

employing the application to solve their key needs. Tailoring facilities are typically very general.

They frequently do not take fine-grained, individual, differences into account and do not always

cater for a user‘s task needs (eith er p erceived or im p licit). A ltho ugh users m ay eventually becom e

committed to the use of some software, and so are no longer discretionary with respect to the

system itself, they may still be discretionary with respect to customising the system to better suit

their needs.

It is important to distinguish between user tailoring and adaptive systems. The former are user-

driven whilst the latter should be system driven. This adds considerable complexity to the design

since an adaptive system has to make decisions about when and how to adapt, whereas a

customized system is driven solely by user decisions. Adaptive systems are therefore systems that

can alter aspects of their structure, functionality or interface in order to accommodate the

differing needs of individuals or groups of users and the changing needs of users over time

(Benyon, Innocent and Murray 1987). Adaptive systems seek to take over the burden of tailoring

systems to individuals, groups and situations in context, or to protect the user from arduous

interface-induced complexity.

Adaptation in terms of the individual is considered to be a key principle in user interface design

and evaluation, e.g.

„D ialogue system s are said to support suitability for individualization if the system is constructed to allow

for adaptation to the user‟s individual needs and sk ills for a given task .‟(O pperm ann et al., 1 9 9 2)

 22

In EVADIS II (Oppermann et al., 1992), this principle has been elaborated as follows:

Parts of the dialogue that are developed with certain user characteristics in mind (such

as normal colour vision or low level experience level) support individualization if they can

be modified to support users who differ in these characteristics (such as colour blindness

or high experience level).

The user should be able to adapt the dialogue system to support his/her individual

strategies of planning, problem solving, and information processing strategy.

The dialogue system should allow for individual preferences with regard to structural,

procedural, and physical aspects.

The dialogue system should allow the user to choose among alternative forms of

representation according to the complexity of the information to be processed.

Explanations (e.g. error messages, help information) should adapt according to the

individual level of knowledge of the user

Techniques such as metaphor and analogy can be employed to make system functionality more

accessible to user populations, and it has often been claimed that these approaches can overcome

many usage problems (Alty & McKell 1986, Carroll & McKendree 1987). However, such

approaches are critically dependent upon a closely shared appreciation of the basis of the

metaphor or analogy employed. Criticism of metaphor in interface design adds weight to this

argument (Kay, 1989).

One important question, of course, is whether the goal of Adaptation is feasible, technically,

operationally or economically. For example, Thimbleby (1990b) has argued that only complex

systems can benefit from an adaptive capability but this very complexity means it is not possible

to provide such a capability because the user patterns of usage be will harder to determine. He

 23

asserts that there is simply not enough bandwidth in the user interface to accommodate the

required functionality for adaptation. Similar arguments can be made with respect to the cost of

building an adaptive capability into an application and with the resulting technical problems such

as processing speed, knowledge representation and so on. In addition, the capability of systems

to incorporate enough suitable knowledge about an individual user in order to make sensible

adaptive responses, and the basis on which such user characteristics can be inferred, has also

been questioned (Kobsa & Wahlster 1989). However the truth of any of these arguments has not

been theoretically proven. For example, a very simple adaptive mechanism may be highly

effective in some circumstances, or the cost associated with the implementation of adaptive

systems may still be justified if they significantly improve usability and the quality of interaction

even if the cost is high (in process control this is particularly true). Furthermore, the inclusion of

an adaptive capability may not be such a large overhead if it arises as a natural consequence of

better attention and metrics being applied to interactive system design

Technical Definitions of Adaptivity
According to (Trigg et al. 1987) there are four ways in which a technical system can exhibit

adaptability:

 ‗A system is flexible if it provides generic objects and behaviours that can be interpreted

and used differently by different users for different tasks.

 A system is parameterised if it offers a range of alternative behaviours for users to choose

among.

 A system is integratable if it can be interfaced to and integrated with other facilities within

its environment as well as connected to remote facilities.

 A system is tailorable if it allows users to change the system itself, say, by building

accelerators, specializin g beh avio ur, or addin g fun ction ality.‘

 24

B ro w ne (B ro w n e et al., 1987) view s adap tive system s as techn ical ‗system s th at ‖b eh ave‖

differentially, dep endent upo n the current user of th e system ‘. T he sam e authors give the

following independent dimensions of adaptable systems:

 Contextual adaptation allowing users to navigate gracefully through tasks

 Changing levels of guidance / feedback, and

 C h an ges b ased upon a user‘s kno w ledge of sim ilar system s.‘

(Browne et al., 1990) classify software as adaptive if it can change its own characteristics

autom atically (perh aps after user con sultation), th ereby adap tin g itself to the users‘ n eeds. T hey

use the term adaptable in contrast, to denote the provision of end users with tools that enable the

users to change the software features and eventually the behaviour of the application. Hence,

adaptability can be considered as a prerequisite for achieving adaptivity and vice versa. However, in

the literature, adaptation and adaptivity are often used synonymously.

Goals of An Adaptive System
The goals that the adaptivity process attempts to fulfil vary substantially in current systems,

according to the requirements of the application and user group. (Dietrich 1993) provides the

following list of adaptivity goals:

easy, efficient, effective use

make complex systems usable

present what the user wants to see

speed-up use

simplify use

providea user interface that fits heterogeneous user groups

provide a user interface that considers the effects of increasing user experience

 25

Additionally, one might state several other goals, such as:

minimise number of errors

maximise user satisfaction

minimise cost, in terms of computational resources

Components of an Adaptive System
Benyon and Murray (1993) describe a generalized architecture for adaptive systems as shown in

Figure 1.

Figure 1 Overview of an adaptive system

This architecture contains a model of the user, system and system interaction. The adaptive

system uses its knowledge of these domains to determine when adaptation is necessary and what

form it should take. The adaptive system takes cues for when to adapt from the user or system,

that match rules contained with the user/system models. The changes can be determined from

utilizing its user/system interaction model as a means of capturing salient interactions between

the two domains and characterizing them within the individual models.

 26

The User Model
The user model captures what the system believes to be the knowledge and preferences of the

user. It can be used to generate adaptability pro-actively when its knowledge of the users state

appears to require adaptation, or by co-operatively interacting with the user to deduce when

adaptation is required. To maintain an accurate model of the user it is essential that the user

model monitors and samples user behaviour and keeps both a history of past actions and an up-

to-date model of the current user state. It uses this data to attempt to deduce the users current

goal, and then alters the system in some way so as to facilitate the achievement of that goal.

The knowledge represented in the user model may be acquired implicitly from inferences made

about the user or it may be explicitly elicited from the user. Explicit acquisition may be achieved

through some co-operative behaviour such as asking relevant questions in specific contexts.

Knowledge for the user model can be acquired implicitly by making inferences about users from

their interaction, by carrying out some from of test, or from assigning users to generic user

categories usually called ‗stereotypes‘. T he sim p lest approach - th e notion o f ―user stereo typ es‖

derives from the work of Rich (Rich 1983; 1989). Stereotypes represent a structured collection of

traits or characteristics, stored as facets, to which is attached a value, and optionally, a confidence-

level and rationale. Some traits are triggers and have an attached probability rating that can

mediate or inhibit firing of a whole stereotype. They can be used to

„… provide a w ay of form ing plausible inferences about yet unseen things on the basis of things that have

been observed‟ (R ich, 1 9 8 3).

Stereotypes model users on a variety of dimensions and represent characteristics of users in a

h ierarch y. A t the top of the h ierarch y is th e ‗any person ‘ stereotype th at defin es ch aracteristics

relevant to all users of the system. Stereotypes at lower levels in the hierarchy may inherit the

characteristics of this stereotype. Lower level stereotypes will depend on the application, but

retain the property of inheriting characteristics from parents. At the bottom of the hierarchy is

 27

the individual who may inherit characteristics from a large number of stereotypes. One of the

problems with such a representation is to decide just what happens when conflicting

characteristics are inherited. Conflict resolution rules must then be included to deal with such

situations.

Rich (1989) describes the space of user models using two dimensions. The first, canonical versus

individual, describes whether the model is of one single user or a collection of models of

different in dividuals. A canon ical m o del represents th e ‗typ ical‘ user an d is not usually stored

exp licitly in th e system . It is the designer‘s m o del identified earlier. Rich also distinguishes long-

term models from short-term models. Long-term models are representations of fairly stable user

characteristics such as expertise or interest. Short-term models are employed in transitory

problem-solving behaviour for the specific task in hand, focusing on particular topics and goals

in the immediate interaction. This distinction is also referred to as local (short-term) user models

in contrast to global (long-term) user models.

In the intelligent interface process control domain, the user model has to deal with fundamental

cognitive characteristics such as users preferences for particular styles of display, and basic

cognitive capabilities such as spatial ability and preferred learning styles (Van der Veer, 1990;

Benyon, 1993b). In these systems long-term, cognitively valid models are vital.

(Benyon 1993b) describes three types of knowledge the User Model should contain to correctly

understand the users goals.

 A task level that describes user goals in the domain. Using this, the model should

understand from interactions, what the user is trying to achieve within the domain rather

than how they are achieving it.

 A logical level describes what the model believes the user understands about the logical

functioning and the logical concepts embodied in the domain. So, the system should be

ab le to un derstan d, for exam p le, th at attem ptin g to execute a datab ase lan guage ‗Select‘

 28

statement in response to a help system prompt is a logical, or semantic error (given that

the help system cannot execute database language statements) rather than a syntactic

error o f attem ptin g to obtain h elp on th e ‗Select‘ statem ent.

 A physical level that describes what the model believes the user understands about the

physical aspects of the system. Thus the system should be able to distinguish between the

operator making a semantic error, and syntactic error.

As mentioned above it is vital that a user model also contains fundamental data concerned with

essential cognitive traits of users. There is an increasing body of experimental evidence which

confirms that users differ in cognitive skills and personality traits and that this significantly affects

the quality and nature of certain interaction styles and user requirements (van der Veer, 1990;

Egan 1988; Jennings & Benyon, 1992). Such user characteristics are particularly resistant to

change by the user and hence are particularly important for adaptive systems. If users find it

difficult or impossible to change certain aspects of their make-up, these are exactly the

characteristics to which the system should adapt (van der Veer; 1990, Benyon 1993b). One

example is spatial ability. This is a characteristic that appears relevant in HCI (Vicente & Williges

1988; Vicente, Hayes and Williges, 1987; Egan, 1988), particularly where users have to navigate

through a conceptual space of file structures or system modes.

The Domain Model
The user model is required in an adaptive system so that it can alter aspects of the system in

response to certain inferred or given user characteristics. The domain model is required in order

to define the aspects of the application that can be adapted or which defines the context in which

adaptation should take place. Other similar terms that have been used to describe this concept

include application model, system model, device model and task model and in our domain, process model. The

domain model serves a number of purposes. It forms, with the User Model, the basis for all the

inferences and predictions that can be made from the user-system interaction. It is important

therefore that the model is defined at an appropriate level of abstraction to allow the required

inferences to be made.

 29

The Domain Model consists of one or more abstractions of the system. These abstractions allow

the adaptive system to reason about the target application, to facilitate adaptations by other

agents, and to evaluate its effectiveness. For example, if the system is to be capable of adapting

the screen displays then there must a sub-model describing the screen state in the domain model.

If it is to adapt the functionality of the system, then the domain model must contain

representations of alternative functional capabilities and the relationship between these functions.

Similarly, if the system is required to alter the description of concepts then these too must be

modelled.

The benefits to be gained from having an explicit and well-defined domain model are

considerable and have long been recognized in Artificial Intelligence research. A separate domain

model provides improved domain independence that allows easy refinement of the domain

model. This is important, as it is unlikely that any adaptive system design will have a perfect

representation of the domain at the first attempt. A separate and explicit domain model can also

be m ore easily used for o ther p urpo ses, such as pro vidin g exp lan ation s o f the system ‘s beh avio ur.

Thus the domain model is a description of the application, containing facts about the domain, i.e.

the objects, their attributes, the relationships between objects and the processed involved. The

dom ain m odel is the designer‘s defin ition of all asp ects of th e app lication relevant to the needs of

the adaptive system. A central question in constructing a domain model is deciding what level of

description should be represented.

To achieve the right level it is important to understand the behaviour of complex systems from

various viewpoints such as a physical view, a design view and an intentional view. The physical

view, (also called the physical stance or physical strategy) argues that in order to predict behaviour

of a system, the physical constitution and the physical nature of any inputs are determined and

then predictions are made about the outcome based on the laws of physics. However, sometimes

it is more effective to switch to a design stance. In this strategy, predictions are made about how

the system will behave by believing that it will behave as it was designed to behave. However,

 30

only designed behaviour is predictable from the design stance. If a different sort of predictive

power is required then the intentional stance can be adopted. This can be summarised as follows:

 Treat the system as a rational agent

 Figure out what beliefs it ought to have given its place in the world and its purpose

 Figure out what desires it ought to have

 Predict that this rational agent will act to further its goals in the light of its beliefs and

hence

 Predict what the agent will do on the basis of what it ought to do.

The Interaction Model
The third component of an adaptive system is a representation of the actual and designed

interactions between user and application - the interaction model. This use of the term is very

different from the interaction model proposed by Norman (1986), which is a theoretical

representation of human-computer interaction in general. The Interaction Model is much closer

to the notion of a discourse model, or dialogue model

An interaction is an exchange between a user and the system at a level that can be monitored.

Data gathered from m on itorin g th is interaction can be used to m ake inferences abo ut th e user‘s

beliefs, plans and/or goals, long-term characteristics such as cognitive traits, or profile data such

as previous experience. The system may tailor its behaviour to the needs of a particular

interaction or, given suitab ly ‗reflective‘ m echan ism s, the system m ay evaluate its in feren ces an d

adaptations and adjust aspects of its own organization or behaviour.

In some representations (Alty & McKell, 1986) the interaction model is seen as a part of the

domain model. However, it can also be modelled as an entity in itself or be seen as a function of

the operator model

 31

There are two main aspects to the interaction model:

 Capturing and analysing appropriate raw interaction data

 Representing the inferences, adaptations and evaluations which may occur

Raw data is processed to create a dialogue history or dialogue record, which is a trace of defined

aspects of th e user‘s ob served beh avio ur. T h is dialogue reco rd is kept for as lo ng as is required

for adaptation decisions. There are interesting issues as to when elements of it should be deleted.

It is likely to contain details such as the sequences of keystrokes, mouse clicks and mouse

movements made, timing information and system messages. It is an abstraction of the interaction

since it cannot capture everything that takes place on the interface.

T h e secon d p art o f the in teraction m o del is a description o f ‗stereotyped‘ interaction s; th e

Interaction Knowledge Base (IKB). This describes the inferences that can be made from the

dialogue, the evaluations of the interaction which are possible and the changes (or adaptations)

that the system can make.

The User Model and Domain Model define on what basis an inference can take place. The IKB

actually carries out the inferencing process by combining the various Domain Model concepts to

infer user goals, strategies and characteristics or by combining user model concepts to adapt the

system. The IKB represents the relationship between domain and user characteristics, and

interprets the dialogue record.

The interaction model is a key component of an adaptive system, but it is difficult to design. The

developer of adaptive systems must decide the levels of abstraction that are required for the

dialogue record, the individual user data and the interaction knowledge-base.

 32

Examples of the Adaptive System Concept
One of the difficulties of discussing adaptive systems is that similar ideas have emerged from

different disciplines, employing their own terminology, which make comparisons and

gen eralisation difficult. System s th at are described as ‗intelligent‘ m ay take m an y form s, an d are

built for many different reasons and to achieve many different goals (Elkerton, 1987; Mason &

Edwards, 1988). Claims of success, however, have been exaggerated and implemented systems

have usually only been successful in well-defined, more manageable areas or where they deal with

limited issues that are more tractable. Benyon and Murray (1993) have provided a detailed review

of adaptive user interfaces, from which three illustrative examples have been chosen.

Intelligent Support Systems
A popular application of intelligent interfaces is in the provision of context-dep endent ‗active‘

help (Fischer, Lemke and Schwab, 1986; Hansen, Holgaard and Smith, 1988;). On-line help

system s track th e user‘s context an d attem pt to aid the user in tim es o f difficulty. Such system s

are called ―Intelligent Support System s‖ (ISS) an d o ften attem pt the very difficult task o f

deducin g a user‘s higher levels goals from a series of low-level interface interactions. Various

strategies and approaches have been suggested. (Fischer et al., 1986; Fischer, Chin, 1986; Jerrams-

Sm ith, 1985). Intelligent h elp h as furth er developed into ‗critiquin g system s‘ (F ischer, 1989),

where users are competent in the subject domain being critiqued, rather than being tutees or

learners (Moore and Swartout, 1988; Fischer, 1987; Fischer, 1989).

A major problem with these mixed-initiative and co-operative dialogue approaches is the position

o f ‗lo cus o f co ntro l‘ at an y one tim e. T h ere is a difficulty in decidin g w ho h as contro l at an y

point, the operator or the interface? If a computer assistant or critic offers a piece of advice that

an individual operator or user overrides, how can that assistant adjust to this situation and

operate in a useful way for the duration of the same task. The problem is made worse if the

sam e task is rep eated. C an th e system learn from the user‘s p ast behavio ur an d so avo id givin g

 33

the same bad advice over and over again? The system must have knowledge of how to be a

‗com p etent assistant‘ thro ugh understan din g the lim its o f its o w n com petence.

Explanation Systems
A variant of help systems attempts to provide an explanatory facility of the behaviour of the

system to the user (Paris, 1989). This was a goal of early expert systems but they were criticised

for failing to provide adequate and suitably tailored explanations. It was realised that to be

effective, these systems had to tailor their explanations to the assumed knowledge of the user

(Carroll and McKendree, 1987). However, these explanation-based systems have presented

extremely stubborn problems to researchers and to system builders because they combine the

problems of natural language generation, help and tutoring in one system.

Co-operative Intelligent Agents
Recent interest in computer supported co-operative work (CSCW), distributed artificial

intelligence (DAI) and HCI have taken the adaptive system concept further and this has led to

the development of interface agents. Co-operative systems require models of all the systems and

humans participating in the interaction (Seel, 1990). Agents are entities capable of voluntary,

rational action carried out in order to achieve goals through holdin g a representation o r ‗b elief‘ in

the state of the world. These beliefs are generated through the agents existing knowledge, and

through observation of its environment and interaction with the user.

Interaction schema will depend upon the number of interacting agents. In more complex

systems, agents may be interacting in a number of ways, modelling other agents and adapting and

responding to a variety of needs. Initially, agent systems promised much but delivered very little.

Over the last few years, however, there has been a movement towards creating multi-agent

system s in th e ―w eak A I‖ m ode, w hereby th e in telligence of th e system arises thro ugh interaction

and negotiation between agents rather than from the inherent reasoning abilities of individual

agents. Multiple agent systems have thus become increasingly more realistic in their goals since

 34

their inception. Such developments can be seen a natural extension of dialogue assistants (Alty

and McKell, 1986; Alty and Mullin, 1987).

Essentially, agents are adaptive systems that are specialised and know about only a very small part

of the world. An important issue for co-operative or support systems is, firstly, how knowledge is

actually represented and, secondly, how the interaction or conversation can be realised. Co-

operative support systems can also be thought of as task-orientated dialogue systems, which are

actually ch aracterised by th e ‗con versatio nal ro les‘ that each p artn er is expected to adopt. A ctive

dialogue partners in mixed-initiative dialogues are tho se th at try to identify a user‘s intention s in

order to exhibit co-operative behaviour. To behave co-operatively, the system must discover the

p lan s un derlyin g the user‘s question s or statem ents; rep resen t tho se p lan s in its kno w ledge base;

examine them for hidden obstacles and provide information that overcomes those obstacles.

Adaptive System Commonalities
Although the three system categories described above different in many respects and originate

from different disciplines, they share many similar characteristics. All are adaptive systems in that

they automatically alter aspects of the system to suit the requirements of individual or groups of

user - or more generally to suit the needs of other actors in the system. All have to infer

characteristics of the other actors from system interactions.

Examples of Web Based Adaptive User Interfaces
There are now many examples of adaptive systems in existence which range from rather simple

implementations, to multi-agent based distributed adaptive systems. In this section we will

examine a broad spectrum of web based adaptive applications will be examined to get a feel for

how such systems work.

 35

One very common use of a simple adaptive system is the domain of information filtering, in which

the aim is to select for the user, material that they will find informative or useful. Systems of this

type have a long history in the field of information retrieval, but have grown in popularity since

the development of the World Wide Web. There are now a number of information filtering

systems that incorporate user feedback and attempt to adapt to user preferences.

O ne exam p le interface is P azzan i an d B illsus‘ (1997) ―Syskill & W eb ert‖, w h ich recom m en ds

Web pages on a given topic that the user is likely to find interesting. Starting from a handcrafted

page for the topic, the user marks suggested pages as desirable or undesirable, and the system

uses this feedback as training data to develop a model of user preferences. Syskill & Webert

represents each user profile as a naive Bayesian classifier, which stores a conditional probability

distribution over a set of predictive features, in this case words that occur in the Web page. The

system invokes this user profile and compares it with the words in a candidate document when

deciding whether to recommend that document to the user. The approach biases its response

towards documents that are similar to ones the user has previously ranked highly. This system

has a simple adaptive mechanism, but seems to work rather well. It certainly has higher quality

results than earlier systems such as Firefly.

Although recommending Web pages is a common application of adaptive information filtering,

other applications exist. The NewsWeeder (Lang, 1995) system recommends news stories to

readers, again using the words in each story to predict whether the user will find the article

interesting. Another popular task involves sorting and prioritising of electronic mail, typically

using words that occur in the message headers and body (e.g., Boone, 1998). This system is a big

improvement on earlier systems such as NewsWire. The quality of the approach ensures the

results are usually good. Another common technique used for electronic mail delivery

recommends items that the user might enjoy based on the user‘s ratin gs and the ratin gs from

other users with similar profiles. Amazon.com uses such collaborative filtering mechanism to

recommend books to its customers.

 36

Another adaptive user interface (Rogers & Langley 1998) provides advice to car drivers. Their

Adaptive Route Advisor accepts a current and desired location from the user, carries out a best-

first search through a digital map and selects a few high-quality routes that are then presented to

the user. When the user accepts one of the suggested routes, the system incorporates this

decision into its training set and revises its user model, which it represents as a set of relative

weights for global route features such as the number of turns, the distance, the number of

intersections, and the estimated driving time. The algorithm that updates this user model carries

out a hill-climbing search through the weights space, endeavouring to characterise parameters

that summarize past choices the user has made. The system then draws on the revised model in

directing the search for routes on future tasks. This system is a prototype, but according to the

authors has returned some impressive results.

Yet another adaptive interface, Inca (Iba, Gervasio, and Langley 1998), focuses on scheduling in

the domain of chemical spills and fires. The Inca system retrieves a schedule from a case library

that best matches the features of the current incident, and then lets the user interactively adapt

them for application to their situation, for which the system suggests likely repairs. Once the user

decides on an acceptable schedule, Inca passes this solution to an execution module, which may

lead to new events and the need for further repairs to the schedule. Personalisation occurs

through storage in the case library of the final agreed schedules, which presumably reflect user

preferences about desirable solutions, and through the induction of rules about the conditions

under which the user makes each type of repair. Inca uses the expanded case library on future

problems and incorporates a revised repair model to recommend future revisions.

Examples of More Complex Adaptive Systems
MMI 2 System
The MMI 2 system (Chappel & Wilson 1993) supports a system user dialogue in which users aim

is to design a computer network for a building. The system acts as an expert in network design,

and provides a number of interface options, which allow Natural Language interaction through

 37

English, French and Spanish. It also provides a variety of interaction modes such as command

language, non-verbal audio and design gestures (such as editing symbols). The user can also

manipulate graphical displays of CAD style building and network diagrams and business graphics

style charts

The knowledge-based design component uses heuristics to make decisions about the selection

and design of graphical responses. The heuristics depend on knowledge about graphic design, the

cap ab ilities of th e grap h ical too l selected an d the inform ation in the system ‘s rep ly. H o w ever,

they also rely on knowledge about the application, the users, the tasks that the users perform and

the dialogue between system and user.

The MMI 2 system does not appear to have any support for spatial adaptation, and seems limited

to selection of various charts from among an array. It does however demonstrate the general

principles of an adaptive system in that it relies on a user/domain model.

The DIGBE System
Dynamic Interaction Generator for Building Environments (DIGBE) (Penner 1998)

automatically designs and presents a user interface that is also dynamically adaptive. DIGBE is

used in the domain of building management for handling tasks such as configuration, monitoring

and control of security and environmental systems, management of users and data analysis.

D IG B E ‘s adaptation m ech an ism attempts to identify the operator and use profile information to

configure a specific interface for that particular operator. To do this the system uses a

combination of mechanisms including role-based task composition and object specialisation. It

responds dynamically by constructing and maintaining real-time models of the system of interest

and the user-system interaction. The DIGBE system provides a degree of domain independence

by separating the interaction and presentation reasoning models. The system is agent-based,

allowing multiple presentation agents to use a single interaction design.

 38

DIGBE works by specialising the interface according to the nature of the user, thus a heating and

ventilation technician would only see heating and ventilation information, a security guard would

have access to very different information pertaining to their role and task. The DIGBE

architecture adheres closely to the general structure of an adaptive system, in that, at its core, are

a domain, task/interaction and presentation model

The DIGBE system uses agents as actors in the roles of domain reasoning, interaction and

presentation reasoning. The system intelligence is centred round the knowledge structures

contained within the agents and the interactions between them. Agents within DIGBE are

actually little more than very simple model managers when separated from their knowledge

structures.

 D IG B E ‘s user adap tation is strictly lim ited to determ in in g the typ e o f interface required b ased

on the type of operator. It therefore specializes the interface to match the operator. It does not

dynamically adapt to the users needs on the fly. It also adapts itself to the state of the objects

within the interface. Thus, when a heater value is changed, this change is represented within

DIGBE as a change within a continuous data object. DIGBE then attempts to select an

appro priate rep resen tation th at best rep resen ts a contin uo us data ob ject, and sen ds the ―create

yo urself‖ m essage to its ob ject in stantiato r.

 The Cicero system
The Cicero system (Arens & Hovy 1995) is an adaptive presentation manager that liases between

the domain and the interface to present the best possible configuration. It aims to be a generic

system or an interface capability platform onto which different applications and different media

can be grafted without altering the basic operation of the system. To achieve this general-purpose

ability, the Cicero performs its job using a collection of declarative models that embody all

knowledge needed to manage interface communication. In particular, it has access to both

generic and specific knowledge of the characteristics of information to be displayed or input, the

 39

ch aracteristics o f availab le m edia, th e com m un icative context, th e presenter‘s co m m un icative

goals (whether h um an or m ach ine), an d the p erceiver‘s go als, in terests, ab ilities and p references.

The general architecture can be summarized as follows in Figure 2

Figure 2 The Cicero Adaptive System

On the one hand Cicero has the data that needs to be presented (or a description of the type of

data that must be input by the user), and on the other a collection of media that may be used,

possibly in some combination, for this purpose. Cicero makes a match dynamically at run time,

using the properties of the data, the communicative goals involved, and the present interaction in

the context of the ongoing dialogue. It then proceeds to select media with features that satisfy the

display desiderata and to create the content of the display itself.

 40

The key components in this architecture are the semantic models, where characteristics are

matched to corresponding models. For example, a typical presentation planner plan stipulates

that when information carries the value high for the feature urgency, it should be presented on a

medium whose model contains the characteristic high for the feature noticeability (such as a speech

synthesizer or a flashing icon). Once the specific characteristics of a new medium have been

defined in term s o f th e appro priate generic m odel, all th e system ‘s oth er m o dules w ill

immediately be able to make use of it.

The system utilises five distinct models, all of which can be defined under a single high-level set

of semantic terms:

 Media characteristics and capabilities.

 Information characteristics.

 Application tasks and interlocutor goals.

 Communicative goals and discourse structure.

 U ser‘s cap ab ilities and preferen ces.

These models are then used to dictate which representation is best used under a certain set of

conditions. This system proposed to use domain models to match criteria, however this system

was never actually built and tested. Additionally, it is limited to displaying only certain type of

representations and does not include a spatial adaptation planner. Lastly, although it is deemed to

be generic it is only designed for reasonably simple systems and not for complex systems such as

the process control area, where solutions are often required in a time-critical fashion. This

system, if implemented, would almost certainly take too much time in reasoning on the nature of

the representation.

There now follows an examination and evaluation of adaptive systems in general, and methods

for assessing them.

 41

The Examination And Evaluation Of Adaptive Systems and

Methods For Assessing Them.
Measures of Efficiency
Users typically employ computational decision aids, including adaptive user interfaces, because

they expect the software will let them accomplish some task more rapidly, and with less effort,

than they could accomplish on their own. This makes the efficiency of the decision-making or

problem solving process an obvious dependent variable to use when evaluating such adaptive

interfaces. However, a metric such as efficiency is complex and reflects only part of the picture.

One obvious candidate for measuring efficiency is the time users takes to complete their

interaction with the adaptive system to achieve a goal. Another is the quality of the solution

provided which will be discussed later.

Table 1 Inca Result

For example, Table 1 shows results from an experimental study with Inca, the interactive

scheduler described earlier. One version of the system presented the user with an empty

schedule, another used heuristic search to generate the initial schedule which the user then

repaired, and a third version retrieved a schedule from its case library for revision by the user.

The dependent measure was the number of seconds taken to transform this initial schedule into

one the user found acceptable.

 42

Another possible measure of efficiency is the effort that the user must exert to make a decision

or solve a problem. Here, a plausible metric could be the number of user actions that occur

during solution of a given problem. In evaluating their system for aiding the completion of

repetitive forms, (Hermens & Schlimmer, 1996) measured the number of keystrokes that the user

took to complete the form, which they found generally decreased over time as the user

progressively interacted with the system. Keystrokes were the obvious performance measure for

this type of interface, but different metrics such as mouse clicks would be more appropriate for

an adaptive graphics package, or utterances might be more appropriate for systems that

incorporate a speech interface.

Measures of Quality
Another important reason why users employ adaptive systems is to improve the quality of

solutions of their tasks. This quality goal is especially common in problem-solving activities that

involve many steps, but it is also relevant for systems that have the goal of selecting an

appropriate item from many choices, like a book or a Web page. As with efficiency, the notion of

quality can be defined in many different ways.

The measurement of quality can be simplified if there exists some objective measure of quality in

the domain. This can then be used directly as the dependent variable in an experimental study.

For example, some popular advisory adaptive systems search the World Wide Web to find the

site that offers a given item (a particular book or software package) at the lowest price. For such

tasks, the selected p rice con stitutes an ob jective m easure o f the decision aid‘s success, w h ich can

then be compared with that achieved by another advisory system or w ith the user‘s perform ance

without computational support.

Evaluating quality is complex in domains that involve more than one criterion for success. For

example, the Inca system, whose results were provided in Table 1, operates in a domain where

the user wants to minimize chemical spills, chemical fires, and hazard to human life. To evaluate

the quality of system solutions in Inca, the developers (Iba, Gervasio, and Langley, 1998)

 43

constructed a simulator that could execute the generated schedules and then measured their

percentage improvement on these dimensions over the alternative of taking no action. However,

to obtain a single quality metric, they had to combine these separate factors in some manner, and

for simplicity they chose to give them equal weights. Table 1 column (b) shows the resulting

quality m easures usin g th is techn ique w h ich suggested th at Inca‘s seedin g schedules usin g

retrieved cases did not significantly improve the final quality measure compared with either

solutions produced from scratch or solutions produced by seeding the repair process with

schedules generated by heuristic search.

However, giving equal weight to different quality criteria conflicts directly with a core assumption

of adaptive interfaces: that users differ in the relative importance they assign to such criteria. One

ob vio us so urce fo r such in form ation is the ―learned‖ user m o del, b ut usin g th is w o uld b e circular

in that it would guarantee improvement in quality. In cases of multiple criteria, we need some

external measure that is subjective but that is not tied directly to the user model, which may only

p artly reflect the user‘s true preferences.

Measures of User Satisfaction
The above observations suggest that some separate measure of user satisfaction to determine

quality o f th e system ‘s b eh avio ur, is n eeded. O n e w ay to co llect th is in form ation w o uld b e to

present each user with a questionnaire asking them about their subjective experience. Although

embedding a questionnaire in the system itself makes extra demands on the user (which seems

undesirable) this does not prevent a researcher from presenting a form to experimental subjects

after they have finished using the adaptive interface However care must be taken since

questionnaires can be unreliable in predicting whether a person will continue to use the system or

not

Another measure of user satisfaction involves giving the user some control over whether they are

allo w ed to use certain system features or not. If a user requests th e system ‘s adap tive capability or

alternatively disables its after some initial interactions, the system may be able to conclude that in

 44

the first case the user seems to appreciate the advice given, or in the latter case the user has not

been satisfied by the experience with these features.

Measures of Predictive Accuracy
Because the user model in an adaptive interface makes predictions about user responses to

system advice, there is a natural temptation to rely on predictive accuracy as a surrogate measure

for efficiency and quality.

However, there are some inherent problems with using predictive accuracy to determine the

success of an adaptive interface. Although this measure can be a useful analytical tool for

understanding the details of system behaviour, it does not directly reflect the overall efficiency or

quality of the solutions obtained, which should be the main concern. Correct prediction of user

responses may be correlated with these direct measures, but it cannot substitute for them. Also,

some studies (including (Gervasio et al., 1998)) have involved collecting user traces in a non-

adaptive setting, and then using learning to create a user model from the data, measuring the

m o del‘s accuracy on th e rem ainder. T h is sch em e violates the standard assum p tion that adaptive

interfaces change their user model over time, making the results of marginal relevance.

Independent Variables
A scientific experiment must do more than measure behaviour under some condition. Because it

aims to understand the factors that influence that behaviour, it must measure the dependent

variable in two or more situations that differ on some dimension. Because these factors can vary

independently, they are often referred to as independent variables. As with dependent measures,

different controllable factors make sense for different disciplines. Here we consider four classes

of independent variables (Effects of experience, quality of decision, personalisation, task

characteristics) that are appropriate in the study of adaptive interfaces.

 45

Effects of Experience
We have seen that adaptive interfaces develop user models by observing user behaviour. This

feature distinguishes them from traditional advisory systems, which remain static in their

response over time or which the user must reconfigure explicitly. However, their reliance on this

approach makes it important that adaptive interfaces learn rapidly, since most users will want to

see their feedback have an effect soon after they have provided it. The issue here is not CPU time

but rather the number of training cases needed before the system can accurately predict user

preferences. Other things being equal, users will prefer adaptive interfaces that learn rapidly over

ones that learn slowly. As (Langley 1997) has noted, this concern with rapid learning encourages

the use of simple induction algorithms, since they usually achieve reasonable accuracy in much

shorter times than more sophisticated methods that have many more parameters.

This concern with learning rates also has implications for the evaluation of adaptive user

interfaces. In particular, it suggests the number of training cases that the system has collected

from the user as a natural independent variable. Plotting some performance measure against the

number of training items produces a learning curve. Such graphs are common in the

psychological literature but remain rare in machine learning, where most researchers report

results on training set of pre-selected size. In general, one hopes that the learning curve for an

adaptive interface will increase quickly in the early stages, even if the curve levels off as the

training set increases.

 46

Figure 3 A learning curve showing the percentage accuracy of a
personalized user model

Figure 3 shows a learn in g curve from R o gers an d L an gley‘s studies o f th eir A daptive R o ute

Advisor. Here the dependent variable is the percentage of route pairs for which the learned user

model correctly predicts the route the subject prefers, averaged over 24 users and over ten

training test splits for each user. As expected, the accuracy increases quickly from random to 75%

after 12 training pairs, and then grows more slowly until it levels off at 79% at around 60 training

pairs. Although more complex induction methods might have higher asymptotic accuracy after

m an y m ore interactions, the R o ute A dvisor‘s sim p le p erception sch em e serves it quite w ell in

achieving a reasonable accuracy quickly.

(Pazzani & Billsus 1997), (Hermens &Schlimmer 1994), and (Gervasio et al. 1998) also report

learning curves for their adaptive user interfaces, which suggests that they all recognize the

im po rtance o f steep early learn in g rates for their system s‘ success. H o w ever, m o st studies still

 47

collect user decisions in a non-adaptive setting, and only then use these traces to train and test the

user modelling method off-line. As noted earlier, the results obtained in such experiments can

differ from those observed in actual system use, since adaptation can lead to different

recommended options as the user model is updated and since the users may react to these

changes in system behaviour.

Quality of Decision – Making Assessments with Non-Adaptive Approaches
Another key claim of adaptive user interfaces, and computational decision aids in general, is that

they help their users make decisions more effectively. Testing this claim requires independent

measures of effectiveness like those considered in the previous section, but it also requires a

comparison between user behaviour with and without the advisory system. Variations of this sort

constitute an important independent factor in the experimental study of adaptive interfaces. A

clear advantage of adaptive user interfaces is that their interactive nature makes it easy to collect

data on user behaviour. But this also means that it is typically difficult to measure user

performance in the absence of the interface. As a result, most experimental studies compare the

full version of a system with a version that lacks certain features but that retains its interactive

(often graphical) nature. Such studies indicate whether the omitted component actually aids user

performance, but not whether users fare better with the limited interface than with no

computational aids at all. Most researchers simply assume the latter holds, although it could be

tested empirically as well, with some difficulty.

(Pazzani & Billsus 97) report one limited interface study with their Syskill & Webert

recommendation system. They compared one version of their system, which based its user

models on a combination of words that the user suggested and a set selected by cross validation,

with a more limited version that used only the former and a third that used only the latter. Figure

4 reproduces their learning curves from one domain, involving Web pages about biomedical

topics, in which both of the more limited systems did substantially worse than the full version of

Syskill & Webert. Similar results occurred for two other domains, which led Pazzani and Billsus

 48

to conclude that both sets of features provided important sources of power for their

recommendation system.

Figure 4 Comparing models

In some situations, it makes more sense to replace one component of the interface with another

component than to remove it entirely. Such a replacement study contrasts system behaviour

using the standard module to behaviour with another module that, intuitively, should not

produce as good results. This straw man may use less information, use less computation, be less

adaptive, or be otherwise more limited than its analogue in the basic advisory system. The

conclusions one draws from such experiments are the same as in limited function studies; if the

straw man leads to worsened performance, then the standard module contributes to the success

of the original system.

The form completion system developed by Hermens and Schlimmer (1994) lends itself naturally

to such a replacement study. Their experimental evaluation examined three conditions, one for

 49

the system ‘s standard adaptation m eth od w h ich relies on decisio n -tree induction, and two others

for simpler induction methods: predicting the most recent value for a given held and predicting

the most common value. These simpler techniques played the role of straw men, in that one

would expect a system which relies on them to fare worse than one which relies on the decision-

tree method, at least if the more sophisticated method is truly useful. The results of their study

supported this conclusion, since the two straw men reduced keystrokes much less than the

decision-tree module.

Personalisation and User Effects
Another type of independent variable that arises in the evaluation of adaptive user interfaces

concerns the nature of the person using the system. The importance of user characteristics has

long been recognized in human-computer interaction, where different types of interface may be

appropriate for different types of users.

Similarly, the notion of aptitude-treatment interaction has made its way from educational

psychology into some computer-based tutors, which present material in different ways depending

on student learning styles. Although such issues are relevant for adaptive user interfaces, they are

less central than the claim that such systems benefit from adapting to individual users.

One can best test such hypotheses about personalization by testing the system on different users

than it was trained on. For example, (Iba et al. 1998) report a personalisation study with their

interactive scheduler, Inca, which involved two separate users. In one condition, they used

sch edules from a given user‘s case library as th e startin g po int for th at user‘s rep airs; th is

co rrespo nds to the system ‘s default m ode. In th e secon d con dition , th ey p resented each user w ith

startin g sch edules from anoth er user‘s case library. T hey p redicted th at sub jects in th e first settin g

would complete their revisions in less time, and produce schedules with higher quality, than those

in the second situation, since schedules constructed by a particular users should reflect their

preferences better than those created by another.

 50

However, their experiment revealed no significant differences between the two conditions on

either dependent measure, suggesting that personalization at this stage of the system is less

important than expected. (Rogers & Langley 1998) present a different approach to testing

personalization claims in the context of their Adaptive Route Advisor. Their first experimental

condition was analogous to that in the previous study, in that it tested a learn ed user m odel‘s

ability to predict route preferences for the user on which it was trained. But in their second

condition, instead of using a model trained on a particular user, they used a generalized model

trained on decisions from 24 different subjects. Their hypothesis was that the personalized model

would more accurately predict user responses than the generalized model, even though the latter

had been trained on 24 times as much data. Figure 5 shows the results of this study, with

accuracy shown separately for each subject. In this case, the personalized models clearly fared

better than the generic one.

 51

Figure 5 The time taken to repair a schedule as a function of task
difficulty

A fourth important class of independent variables concerns the characteristics of the task that the

decision aid aims to support. In general, adaptive interfaces are intended to help users handle

difficult tasks effectively, so most task variables involve some measure of problem difficulty. For

instance, one can make a selection task more challenging by increasing the number of items

available or by increasing the number of features that describe each item. Similarly, one can make

a configuration task harder by increasing the number of slots to be filled, the number of

components possible for each slot, and the constraints that must be checked amongst them. The

general prediction is that, as task difficulty increases, performance on the task will decrease.

However, designers of adaptive interfaces are less interested in the task effects themselves but

more in the ability of their computational aids to minimize these effects. When present, this

 52

ability should appear as an interaction between task variables and system variables. So, an increase

in task difficulty is expected to result in a lower reduction in performance when using an adaptive

interface than when operating without such assistance. Users will still take longer to make

decisions and generate solutions with lower quality when they encounter more difficult problems,

but we would expect the rate of reduction to be less than if the task was attempted without an

advisory system.

 An illustrative example of a task-oriented experiment comes from the Inca study (Iba et al 1998)

that compared the times taken to repair an initial schedule, retrieved from a case library, with

another schedule generated by heuristic search. In a follow-up analysis, the researchers decided to

order the scheduling tasks by their solution time under the second condition, which constitutes a

rough measure of problem difficulty. Figure 5 presents the two resulting curves, which show that

the time to repair generated schedules increases with problem difficulty, but that this trend is

much weaker when users repair a schedule that Inca retrieves from its case library. Note that the

definition of task difficulty here is somewhat circular, as it is linked to the dependent measure

rather than being defined independently. Still, the experiment illustrates the interaction between

task complexity and components of the advisory system.

Conclusion
As interfaces become more complex, and require greater degrees of interaction, it becomes

increasingly important that the interface provides greater support for the user. Adaptive systems

provide just such a mechanism, they attempt to glean a understanding of the context in which the

user is operating the interface, and utilise this knowledge to configure the interface in such a way

as to m ake the user‘s go als m ore attainab le. T h ey aim to m ake the operation of the interface a

more efficient and easier task whilst maximising the users satisfaction. Adaptive systems are of

most use within complex domains where, typically, the user has to deal with large amounts of

information in short amounts of time.

 53

For an adaptive system to operate satisfactorily it must have adequate knowledge about the

current context of the users operation. To do this, a general model is proposed of an adaptive

system, which incorporates a user model, a domain model and an interaction model. The user

model captures contain knowledge of how the user interacts with the system, user trends and

expected behaviour. The domain model captures knowledge about the domain the user is

operating in, and the interaction model captures how the user interacts with the system.

There exist many types of adaptive system, from primitive web-based systems to more complex

adaptive presentation systems such as DIGBE, Cicero and MMI2. The more complex systems

adhere to the general model of an adaptive system, and exist in several different domains. Agent

based systems lend themselves very well to an adaptive system, since independent agents can

represent the actors (domain, user and interaction) that should exist in an adaptive system

(Chapter 4). These multi-agent systems tend to rely more on the weak notion of AI to deliberate

about required run-time adaptations. (Chapter 5)

Several means exist of assessing an adaptive system including: efficiency, quality, and user

satisfaction.

This chapter has therefore shown that adaptive systems are an interesting area of investigation,

particularly in complex domains where their usefulness can be maximised, and that multi-agent

systems are an attractive means of implementing such systems.

The next chapter investigates one such complex domain, the domain of process control, and

examines why an adaptive system would be useful. It also describes issues that exist within

process control that are important for building an effective adaptive system.

 54

C h a p t e r 3

PROCESS CONTROL INTERFACES

Introduction
In this chapter an examination is made of the domain of process control, and the problems this

complex domain can present to the operators trying to control it. In the process control domain

there is a surfeit of information that can be presented in many different representations. These

different representations support different problem solving techniques, and the appropriateness

of a particular technique will depend upon the problem, the context and the operator. Clearly, an

adaptive approach would be beneficial since the system could choose the most appropriate

technique relevant for a particular context. Recent developments in multi-media interfaces have

relevance here since they can provide a set of alternative representations that would form the

base material upon which the adaptive system would act. The problems frequently encountered

by operators are first outlined, and then a number of proposed design methodologies are

examined. Approaches using multiple media, extracted from the literature, are proposed as a

possible means of alleviating these problems.

Process Control Work Domain
Designers have continually strived to improve the design of process control interfaces in the

belief that:

 Economically substantial savings can be made

 55

 Safety margins can be improved

Process control interfaces are becoming more complex because the introduction of automation

has put a physical and cognitive layer between the process and its human controllers. Operators

no w ten d to contro l w hat (W icken s 1984) term ed the ―o uter-loop variab les‖ as oppo sed to the

―inn er loop variab les‖ w h ich are h andled b y the supervisory an d co ntro l system autom atically.

Outer Loop variables need higher level cognitive frameworks and it is hoped that adaptive

presentation systems which fully exploit multiple media, will provide the operators with a clearer

idea of what is happening in the process, particularly during disturbances.

The Process
There are several problems that are unique to process control systems, which cause operator

difficulty. Firstly there are inherent delays between operator actions and observable effects.

C ro ssm an ‘s W aterb ath (C rossm an & C oo ke, 1974) is a simple process control system, which

illustrates the difficulty of controlling a simulated process when the response is delayed.

Secondly, processes are often very complex and involve the control of several concurrent sub-

processes. The sheer size of many industrial processes means that the number of parameters that

can, and must be controlled, is very large. Similarly the amount of sensor data required to support

these control actions is also high, regardless of whether control is carried out by the operator or

by automatic feedback loops. For example, in a gas cooled nuclear power plant such as Scottish

N uclear P o w er‘s H unterston B p lant in A yrsh ire, Scotlan d (Sh ah idi et. al., 1990), the coo lant gas

flow, power supply, reactors, steam turbines and power generation all constitute complex sub-

systems of the overall process being controlled. Each of these sub-systems must function

independently and in parallel. Consequently, there are multiple concurrent tasks, which require

th e operator‘s attention .

 56

All these prob lem s add to the com p lexity o f th e operator‘s task in a process contro l en vironm en t.

It is the hypothesis of this thesis that an adaptive presentation system will aid the operators in

controlling and manipulating the process more efficiently

Process Automation
It is the complexity and critical responsiveness of the process to be controlled that has motivated

the partial automation of many industrial processes. The technology that enabled this to happen,

has improved the safety, as well as the efficiency, of modern industry (Sanderson 1989).

However, the operator has not really benefited from this. Bainbridge (1987) articulates that many

operator problems stem from the fact that the automation system has taken over the relatively

easy tasks and left the most difficult problems to be handled by the operator. As operators cease

to exercise real manual control of the process, these skills will be degraded. Instead they must

execute qualitative judgements, according to objectives that may be fuzzy and often conflicting

(Sanderson, Verhage and Fuld 1989). The control actions now consist of relatively rare

adjustments to the system parameters that are effected in a discrete manner through the

automation system.

A large p art of the op erator‘s task is to m on itor the trends of the variables under automatic

control. The fact that the role of the operator has changed to a more cognitively challenging job

under normal operation is in itself not a problem. However, when failures occur it may be

impossible for the automation system to react in a flexible enough way to keep the process within

normal operating conditions. Under such circumstances the operator is expected to revert to the

traditional role of manual controller and maintain operation whilst locating, and preferably

eliminating, the fault. (Bainbridge 1987) regards this expectation as unfair on operators due to the

lack of training that they have in manual control. The situation is confounded by the fact that

when something goes wrong with the process or the automation system, such systems often

behave unpredictably. Consequently they are much more difficult to control.

 57

Bainbridge further claims that the lack of experience in actually controlling the process will

degrade th e o perato rs‘ deep kno w ledge of ho w it works. The kind of experience that is gained

from observing how the process reacts to manual control cannot be developed whilst monitoring

the process through the view provided by most supervisory control and information systems.

Traditional operator skills are therefore being lost.

There are also difficulties with the new skills that operators must acquire to carry out their new

tasks. Monitoring is a task that involves passive assimilation of information over long periods

with relatively few actions. The human attention span may therefore be stretched. This requires

adjustments to the working practices of operators in order to minimise the dangers of boredom.

The monitoring task can be made easier by improving the quality of the information, for example

by means of intelligent data filtering mechanisms and support through knowledge based systems.

Multi-media approaches can also make tasks more engaging by improving the way in which this

information is presented.

A final relevant asp ect o f the o perato r‘s environment is that each plant (process and associated

control and information system) is purpose-built. The individual differences between plants are

normally so large that a generalised approach to controlling chemical processes (for example) is

not feasible (Wickens 1984). The most valuable experience for controlling a process is therefore

gained only by controlling that particular process. This differs from, for example, the job of a

TV- and radio technician, who has enough general experience in their fields to diagnose different

devices using standardised strategies (Rasmussen 1986).

In summary, the main sources of difficulties for process operators include:

 The presence of three different systems: the process, the control and automation system

and the information system.

 The dynamic nature of the process.

 The complexity of the process and automation system.

 58

 The large volume of process information.

 The existence of multiple concurrent sub-processes.

 The slow response from the process.

 The cyclic causal relationships inherent in the process.

 T h e need to contro l th e process thro ugh ―H ands off‖, discrete, o uter-loop control

mechanisms.

 The infrequency of disturbances and the unpredictable behaviour of the process when

they do occur.

 The uniqueness of the process.

Communicating Process Information To The Operator.
A number of media are currently employed in communicating the state of the process to the

operators. Most are visual (functional displays, alarm lists etc.) but audio techniques are also used

mainly for alarms.

Functional Displays
Functional displays are used to communicate the state of the process of the operator. The mental

models, which are required to diagnose complex process conditions and exert knowledge-based

control in unstable conditions, are often externalised for the operators through such displays. In

addition to the displays based on Rasmussens abstraction hierarchy, examples of displays which

aim to externalise the mental models are described by (Beltracchi 1988) and (Bock 1988)

Beltracch i‘s (1988) disp lay is a fun ction al m o del disp lay fo r n uclear po w er p lants, w h ich h as been

integrated with alarm information. The computerised model of the energy cycle in the process is

based on the Rankine Heat Cycle and used to train operators of nuclear power plants. Although

 59

Beltracchi does not report formal evaluation of the display, observations made during testing

indicate favourable results, both for the tasks of monitoring and of diagnosing plant trips.

(Bock 1988) describes a computer aided process information system, PRISCA that has been

installed in several nuclear power plants. It provides multiple views of process information

through computerised displays. The highest level is a panel graphic of the whole process, offering

the operator initial information in the event of a disturbance. Graphical representations,

presented through dedicated displays, or process variables, overlaid with production target

quantities, serve to focus the operator on the relationship between the current process state and

the desired process state. More detailed and functional and physical views of the process are also

available through the system. Illustrations of displays that clearly show information at different

levels of abstraction are given in the paper, although the extent to which these have been

implemented in plants is unclear.

Alarm Displays
Alarms are a key part of any functional display. Typically many alarm displays employ a first-out

technique. This is in recognition of the difficulty of determining the root cause of a cascade of

erroneous symptoms. Faults have a tendency to remain latent until sufficiently compromising

conditions arise. From that point the propagation of the fault may be rapid. Built in security

defences in areas of the plant which have no relation to the original fault may be triggered and

the operator can miss the vital initial stages of the incident. Traditional annunciator systems also

normally trigger a visual, and perhaps, an audio alarm for each discrepancy detected. Thus, the

sheer density of visual and audio information may turn into an avalanche and become an

interferin g factor rath er th an a diagn ostic aid. T h e ‗first-out- approach is used to indicate to the

operator which alarms were the first to be triggered, and the subsequent sequence of events.

In order to reduce the density of alarms, filters can be applied so that only the most pertinent

alarms are relayed to the operator. The success of such an approach clearly depends on how well

the system is able to discriminate between alarms. Because alarms mean different things in

 60

different context, a full understanding of their function is a difficult knowledge-based problem,

which is hard to solve particularly when the operators are under pressure. Intelligent filtering of

alarms is not always beneficial, however. (Corsbergh 1988) who reports on experiments

evaluatin g, am on gst other th in gs, op erator‘s respon se to filtered alarm in form ation, sho w ed th at

operators were uncomfortable about the possibility of losing important information.

A po sitive asp ect o f C orsb ergh‘s disp lays w as a lin k betw een th e filtered alarm and th e relevant

process information. This allowed a partial or complete diagnosis of the problem to be obtained

from the alarm display. (Baltracchi 1988) produced a similar alarm system. In this case, the fault-

information displayed the discrepancies between process variables and their set points.

B altracch i‘s study reported po sitive effects from th is integrated app ro ach , altho ugh com p arative

studies with non-integrated fault-information were not carried out.

Human Errors In Process Control
Whatever the technique used to communicate information to the operators, they will inevitably

make mistakes in interpretation, in diagnosis and in control actions. Errors committed by

operators often have their root cause in a lack of regard for human performance limitations in

th e design o f the operator‘s en vironm ent. It is therefore n ecessary for th e design ers of pro cess

control presentation systems take into account the tasks the operators are required to perform

and the resulting cognitive demands. Designers should then intelligently use media to provide the

most efficient way of communicating the process state and deviations to the operator. In order to

understand problems that arise at the interface, we need to have a clear view of the job of an

operator.

Process control operators are involved (Sohier & Bertels 1992) in five well-defined activities:

 61

Monitoring

Monitoring involves checking critical variables to spot deviations from predefined set

points as soon as possible. Generally this activity is highly automated and manual control

is generally not required. However, it is not always such an inactive process. Automated

systems generate a large number of warning indication, many of which do not signify real

disturbances. Therefore, operators are often busy acknowledging alarms of little

significance under normal working conditions.

Diagnosis

Diagnosis involves identifying the causes of deviations and deducing plans to stabilise

plant conditions. This process requires information from a number of sources such as the

process dynamics, the current process state, operating procedures and production goals.

Diagnosis techniques may therefore involve a wide range of other activities such as

information browsing and hypothesis generation/testing. Efficient diagnosis also

depends on the extent to which the operator has formed an accurate view of the process

state prior to when the deviation occurs. Efficient information processing is usually an

essential ingredient of correct diagnosis.

Prediction

Prediction seeks to identify potential consequences of plant deviations in order to

prevent them. Prediction and diagnosis are similar in that both involve speculations about

causes and effects within a system. Whilst diagnosis is concerned with explaining the

causes of an observed effect, deduction seeks to find the effect of a known cause.

Control

Control involves effecting changes in the operation of the process system. Thus, control

can be the implementation of the plan identified during diagnosis or prediction phases.

 62

Overall

During a typical operation, the operator may have to perform several of these activities

usually beginning with monitoring, then diagnosis and prediction and ending up with the

execution of control actions. However, this order can never be predicted as often

complex tasks usually requires several iterations of solving sub-problems, involving

further observations and predictions etc.

Although operators make genuine mistakes, a large number of errors have their root cause in the

design of the system or in the human interface (Rasmussen 1986, Sanderson 1989)

The Nature Of Operator Errors
Types Of Errors
Reason (1992) distinguishes between three types of errors. The first type, slips and lapses occur

when an unintended actions takes place often caused by attentional failures or memory lapses.

The second type, mistakes are intended actions that happen to be wrong. They can be divided into

two sub-categories. A rule-based mistake is an action triggered by a known rule, which is

inappropriate under the circumstances for whatever reason. A knowledge-based mistake on the

other hand happens when there are no known rules to apply and the operator incorrectly deduces

the action to be taken. The final type of error is violation. This is an unsafe act carried out in good

faith, contrary to the prescribed procedure.

Five of the seven acts categorised as unsafe in the Chernobyl accident were violations (Reason

1988). The fact that operators saw the need, in adverse plant conditions, to violate prescribed

procedures indicates that the procedures were inadequate. However, the problem is more

fundamental than this. (Vicente 1991) distinguishes between events in a system that are

anticipated by the designers and those that are not. Anticipated events can be dealt with through

procedures or other forms of explicit support for the operators that help to minimise the

likelihood of knowledge-based mistakes occurring. However, by definition there is no way of

 63

prescribing responses to unanticipated events. The operators in these cases must rely on

experience as a basis for forming a knowledge-based diagnosis.

In his work on identifying human errors in process control environments, Hollnagel (Hollnagel

1993) has made an important distinction between the underlying cause or genotype of an error, and

the observable manifestation or phenotype of the error. Most work on human error has been

primarily concerned with the causes of error rather than the errors themselves. However, as

Hollnagel points out it is often a mistake to mix the classification of observable phenomena with

the interpretation of their causes. For example, an operator who fails to carry out an action is

o ften said to h ave ―forgo tten ‖ th e action, when actually the observable manifestation of the error

can only be seen as an omission, which may or may not be rooted in the operator forgetting.

Furthermore, depending on the purpose of identifying the error, the cause of he omission may be

irrelevan t. O nce the agent is ―rem inded‖ to do the action, the reason they om itted it m ay n ot b e

an issue.

In (Hollnagel 1993) Hollnagel sets out to define a classification of observable errors, or what he

calls error phenotypes. Rather than relying on an analysis of actions and plans in a limited domain,

he begins by enumerating all possible errors involving a single action that can occur in a generic

plan, defined as a totally ordered sequence of actions all of which address a single goal.

The phenotypes are classified according to the level of observation or inference needed to

identify them. 0-order phenotypes are those that can be detected based on the observation of a

single action together with an expectation for that the next action will be. The more complex, 1-

order phenotypes are derived from the combination of two or more o-order phenotypes. The 0-

order phenotypes are simple to define and can be identified immediately in a plan since they

involve only a single action. On the other hand they do not allow us to get a bigger picture of

what is going wrong with the plan, since the underlying cause of the error may effect a whole

sequence or sequences of actions. Looking at errors involving sequences of actions, simple

phenotypes can be expanded into larger, more complex set of 1-order phenotypes. The 1-order

 64

phenotypes have the serious disadvantage that they cannot be recognised unambiguously on the

basis of a single action.

Hollnagel's error definitions rely on the characterisation of a plan as a totally ordered sequence of

actions that are necessary and sufficient for achieving a goal. This implies that once the observer

h as determ ined the operator‘s go al, th ey th en kno w every actio n that the operator sho uld

perform to achieve that goal, and in what order they should be performed. This assumption is

not justified in most realistic situations for a number of reasons.

Firstly, this characterisation of plans does not take into account the possibility of alternative ways

of addressing a goal. Therefore it does not allow the classification of situations in which the

operator is addressing their goal, but in a sub-optimal manner. Secondly, it also does not

consider the interactions that may occur when multiple plans are executed concurrently. For

example, a realistic system must be able to recognise which of the currently active plans an action

is intended to participate in.

Finally, while Hollnagel defines plans in terms of totally ordered action sequences, in general, the

actions in a plan do not have to be totally ordered. It may be up to the operator executing the

plan to decide what to do first, and some actions may be done in parallel. The relative ordering

of actions in a plan can be constrained by a number of relationships or interactions, including

precondition achievement, logistical or resource constraints, and avoidance of contraindications.

Additionally, defining plans as totally ordered sequences is many years behind the state of the art

in AI planning. Contingencies and non-linearity‘s are im portant th ese days. T asks are sequential

actions when there are no other choices for the operator, therefore this assumption is rather

naive.

 65

Design Methodologies For Process Control Interface Design
R asm u ssen ’s D ecision L ad d er

Rasmussen (1986) has proposed a generalised model (the Decision Ladder) to describe the

sequence of cognitive information processes that are involved in process control decisions (see

Figure 6). The model has been derived from verbal protocol analysis of operators of real process

plants. It identifies the mental processes without assuming how each process operates or what

kinds of knowledge structures are brought to bear.

T h e o utco m e o f an info rm ation pro cess is a n ew ―state o f kno w ledge‖. A n information process

may produce different states of knowledge depending on the experience of the operator and the

certainty of the situation.

The sequence indicated by the solid arrows in Figure 6 is the kind of processing required for

difficult problem solving, that is, for problems that involve a high degree of uncertainty. Each

step in the ladder ascending the left hand side poses questions, which are increasingly abstract,

and which need to be answered through an information process. Ultimately the operator must

consult the overall objectives of the process to evaluate what the desired outcome of the actions

should be. The descending right hand side comprises the decomposition of goals into tasks,

procedures and actions that are physically carried out. However, most disturbances in process

plants are minor and are responded to by routine operator actions.

The stepped arrows, that bypass various phases in the decision sequence, represent these more

direct ways of initiating the correct actions. The Decision Ladder is activated when a deviation is

detected during monitoring, and terminated when the control action is taken. Thus, this model

can be used to describe the complete decision task in a closed loop with the environment.

However, not every decision will have a control task as its outcome. During the monitoring of

normal operations, for example, the operator may continuously engage in part of the analysis

 66

phase on the left hand side. That is, observations are made and the current, predicted and desired

states of the process may be evaluated. If the predicted state is the same as the desired state no

action is n eeded and th e cho sen task is said to be a null task. R asm ussen ‘s D ecision L adder is an

example of an operator model.

Figure 6 R asm ussen‘s (1986) D ecision L adder

 67

R asm u ssen’s A bstraction H ierarch y
The Decision Ladder is based round the classification of information processing into three types:

skill-based, rule-based and knowledge-based (Rasmussen 1986). The premise for this theory is

that humans are equipped to control their environment according to abstract objectives and there

are three layers of processing which help them in achieving this.

At the bottom of the hierarchy are the sensory and motor skills (skill-based behaviour).

“S k ill based behaviour is control of activities (that) require on -line, real time control based on tacit knowledge

that cannot be described by the actor. It depends on interaction with temporal-spatial configuration of objects

that can be real material objects or configurable representations of concepts‖(R asm ussen 1994)

 These acts require no conscious control, and function independently of central processing and

working memory. Skill based behaviour is often exhibited as people learn to master a task

involving sensory-motor processing. Tracking an object round a screen with a joystick driven

cursor is an example of such behaviour. Each time an action is taken (change direction or speed)

the response must be observed and used to determine the next action. Thus it is a stimulus-

response chain, which forms a closed loop with the environment. However, human beings are

also capable of ordering their motor system to perform sequences of actions without relying on

feedback between actions. Writing a signature is an example of this. Composite actions can be

performed in the absence of feedback by executing what is called a motor programme. Such

programmes (skills) can be built-up with practice, and be controlled by higher levels of cognitive

behaviour.

In particular, a sequence of actions may be activated by a stored rule or procedure. This is rule-

based behaviour o r ―kno w -ho w ‖.

“R ule based behaviour is the generation of proper organisation of patterns of m ovem ents into plans depending

on access to stored rules and to experience from past work scenarios. The planning is done ahead of the action,

 68

that is, it is not synchronised with the interaction and is based on recall of past experiences and imagination of

future encounters. It depends on the availability of convenient cues to release acts, cues that are only

conventional signs w ith no functional significance”(Rasmussen 1994)

Typically, this indicates the operator is functioning within a well-defined and pre-set method for

dealing with a problem. That is they have identified the symptoms of a problem, and are acting in

a regulated and rigorous method to resolve the problem.

In and adaptive system, it may be possible to deduce the nature of the problem the operator may

be working on from th eir b eh avio ur. F o r instance, if th e operator‘s action s m atch a ro utine for

shutting down a valve, the system may assume that is what the operator is doing. It can thus

compare expected actions with operator actions; if there is divergence the system may act (adapt)

to converge the actions of the operator towards the expected.

In contrast, the highest level - knowledge-based behaviour - is invoked by the absence of

previous experience of a situation.

“K now ledge based behaviour is based on sym bolic, m enta l model representing the deep, internal sources of

regularity of the behaviour of the work, environment and information is interpreted symbolically with reference

to this m odel”(Rasmussen 1994)

This is where the operator faces a problem but does not, at that time, know the solution. The

operators utilise the available information, along with their experience to deduce the nature of the

problem. This is an area where an adaptive system can really aid the operator. Since the adaptive

system would have knowledge o f the process, and of the operators‘ actio ns, it co uld attem pt to

ascertain the problem, and then help to point the operator towards the appropriate solution

R asm ussen‘s taxonom y pro vides a fram ew ork for the understan din g o f in form ation processes o f

human perception and cognition. It also broadly maps behavioural types on to the Decision

Ladder in Figure 6. At the bottom of the Figure, in the initial and final phases of the decision

 69

task, skills are required. Direct stimulus-response behaviour occurs across the bottom from left

to right. If the problem is relatively well known, a stored rule will be triggered from which

shortcuts can be used to move from observations on the left hand side to task selection on the

right hand side. So rule based behaviour resides in the middle section of the diagram. The

knowledge-based domain is at the top where goals are explicit, the environment is considered in

an abstract way, and plans are evaluated.

The methodology proposed by (Rasmussen 1986) for the design of supervisory and control

systems incorporate the three frameworks described thus far: the Decision Ladder, the skills,

rules and knowledge behavioural framework and the Abstraction Hierarchy. The methodology

assumes that the starting point is a physical plant with certain characteristics and control

requirements. It therefore involves all aspects of the control design.

Initially the control requirements of the system are represented as constraints at all levels of

abstraction from the operational objectives down to individual process components. Safety

requirements are also introduced as constraints. The decision tasks that are needed to fulfil these

constraints must then be specified. This can be done using a Decision Ladder for each task. The

variability in the knowledge requirements for different decision tasks can be effectively

represented in the ladder. The decision sequences can be annotated with external data and

knowledge requirements for each step, in the form of references to entities in the abstraction

hierarchy. Simple feedback loop decisions can be identified at this stage and earmarked for

automated implementation.

The next step is a cognitive task analysis, which involves identifying the various information

processing strategies that can be used in each processing phase in the decision tasks. In other

words, the information that the designer has identified as the desired outcome of a processing

stage must be discerned by the operator. The various ways in which the operator (or the

automation system) can do this must be made explicit so they can be accommodated in the

implementation. A number of diagnostic processing strategies are discussed by (Rasmussen

 70

1986). The tasks can now be allocated to either the human operator or the computer system.

This should be done to optimise the decision making performance, bearing in mind human

behavioural characteristics and information processing limitations as well as software and

hardware resources and limitations. The final phase is to design and build the systems, the

control room, the operator interfaces and training procedures.

A ltho ugh R asm ussen ‘s appro ach in corpo rates som e useful fo rm alism s, it is no t a detailed design

methodology. Indeed, the method stops when the actual system design begins. The following

three points about the method are important to note in this context, though:

 Thorough analysis of the system to be controlled at multiple levels of abstraction is

essential. If the control requirements are not known by the designer in such detail it is

unlikely that interfaces, which effectively support the operator, will be produced.

 Rasmussen assumes that the system is designed for a new process. However, it is often

the case that information systems are designed for existing plants with an already

operational control system. In such cases the control requirements that must be identified

are already constrained by the functions of the automation system.

 Decisions and information processing strategies in problem solving must be explicitly

represented. Models of human behaviour can inform such representations. To be useful

in interface design, however, these representations must also make explicit the items of

information required by the operator to fulfil the strategies. These items of information

range from production objectives for higher-level decision making, to the state of an

individual component for low level decisions.

To fully incorporate the abstraction hierarchy a full system analysis would be required, which is

often in process control a very difficult task, other problems with the abstraction hierarchy can

be found in (Lind 1999).

 71

An alternative to the design method proposed by Rasmussen, is the grammar-based methodology

called Multi-level Flow Modelling (MFM) (Lind et. al. 1989). MFM represents an approach to

modelling intentional knowledge in the domain of complex process control. By taking into

account not only the physical component level representations of the plant, but also the

objectives and goals a deeper, more meaningful insight can be achieved as to the state of the

process. This knowledge can then be used to aid in diagnosis of problems within a process.

MFM utilises abstraction along means-end and part-whole dimensions and utilises flows in terms of

mass and energy to interpret process behaviour in terms of goals. Since, MFM integrates

reasoning about goals and functions within a single framework, in times of disturbance it can

support the operator in assessing the problem and deducing its cause

However, one of the main problems with MFM is finding a suitable presentation format for the

model to be displayed in. The symbols used by MFM may be unfamiliar to the operator, and it is

still undecided as to the best means of presenting abstract concepts such as goals, objectives and

functions in a meaningful way to the operator. Still, this is a very useful methodology and could

be utilised successfully as a means of constructing the Process Model Agent, and loading it with

appropriate conditions. Additionally, MFM representations could be set as appropriate

representations for the adaptive system to switch to if it seems the operator is confused as to the

nature of a process problem.

A nother m etho d fo r interface design, w h ich is related to b oth R asm ussen‘s appro ach to

supervisory an d contro l system design , as w ell as L ind‘s Multi-level Flow Modelling approach,

is Ecological Interface Design (Rasmussen & Vicente 1987, Vicente & Rasmussen 1990,

Vicente 1991). This method implements a cognitive approach to interface design based on the

abstraction hierarchy. It is also said to have a base in the field of ecological psychology, which

emphasises the duality between an organism and its environment. A founding principle is to

provide a rich information environment, which renders the process system at all levels of

abstraction. This is intended to improve knowledge-based behaviour by reminding the operator

of the composition of the system (Vicente & Rasmussen 1987). The principle of making system

 72

component states visible is also advocated as beneficial for the formation of mental models by

(Wickens 1992). Rather than basing the method on a description of decision tasks which would

ultimately derive what information was needed and when, the approach elegantly side-steps this

problem by proposing to make all the information visible all of the time. In the example design

described by (Vicente 1991), which is a graphical interface for a small scale but complex

simulation, this principle is followed to the extent that selected items from the different levels of

abstraction are shown.

Figure 7 Vicente (1991) Ecological Process Display

 73

Figure 7 shows part of the interface display used by (Vicente 1991) for the mass and energy

flows in the DURESS simulation. The roman numerals represent the level in the abstraction

hierarchy for that item. Legend:

 Functional Purpose (to maintain demand and temperature) (I)

 Abstract Function (represent mass and energy causal structures separately) (II)

 Generalised Function (elements of standard heating and liquid functions) (III)

 Physical Function (variables in the physical system that can be controlled) (IV)

 Physical Form (the layout of the components) (V)

Figure 7 illustrates th e ‗richn ess‘ o r in form atio n den sity th at results fro m th is m etho d. It sho uld

be noted that the actual simulation used consisted of 2 identical vats, 2 pumps and 6 valves,

which actually made the display considerably denser than the impression given in Figure 7.

The information shown in the display has been selected through a detailed, formal representation

of the system at all levels of abstraction. This means-ends decomposition of the complex system

starts with the purpose at the top, which is to maintain the system within certain flow demand

and temperature targets. Next, the mass and energy balance is represented in terms of sources,

sinks and storage. This is equivalent to the input, inventory and output represented in the

integrated geometric shape for each system in the display. The levels of generalised and physical

function bring in rates of mass flow and heat transfer as well as component states such as heater

and valve settings. The layout, which is said to represent the physical form, shows connections

between components. However, the fact that the components have been separated into distinct

abstract functions somewhat obscures the physical form.

(Vicente 1991) compared operator performance using the above interface to that achieved using

a disp lay, w h ich on ly rendered the physical system . T h e ‗eco lo gical‘ ap pro ach pro duced a better

performance. However, it was more difficult to operate and was thus only fully exploited by

 74

expert users. Tests on memory recall indicated that expert users who did not have the functional

information available, attempted to derive the missing information during diagnosis.

This experiment is an elegant demonstration that knowledge-based reasoning can be actively

supported by making artefacts visible and emphasizes the role appropriate multimedia

representations might play in aiding the operator decision process. A word of caution is needed

regarding the approach, the demonstrator process is very small scale. For very complex

processes, the notion of continuously rendering information at that level of detail is likely to

stretch the attention limitations of the operator. A more flexible layering of the information, so

that operators have some control of what information is displayed is desirable (Lind et. al. 1989).

Ideally both the level of aggregation and the level of abstraction shown should be adjustable.

Using Multi-Media In Process Control Interfaces
Studies have developed multimedia guidelines for use directly with process control. (Alty et al.

1992) details a study of the use of various media combinations in supporting a process control

task in which flow-rate of water into a water tank had to be controlled. The task required a

number of types of knowledge, such as spatial information concerning water level, action

information concerning valves and a heater, and causal information concerning relationships

between these components. The study made use of a number of presentation conditions: text

versus graphics, sound versus no sound, speech versus no speech. The usefulness of media

depends upon the problem situation. For example, the sound of the flow of water into a water

bath was provided for the operator. However:

 For simple tasks, the sound of the flow rate in the study had a detrimental effect upon

perform ance and understan din g o f the task: ―use of a co m p lex n aturalistic so und m ay not

h ave the discrim inab ility required‖

 F or m ore com p lex tasks, so un ds im p ro ved p erform an ce: ―th e clear p attern th at

emerges.is that operator performance with interfaces using sound was better for difficult

 75

tasks th an fo r easier on es.‖ T h is co uld b e used w ith in o ur adaptive system in th e case of

not utilising sound when there is no disturbance within the process. However, if the

situation becomes complex it may be valuable to introduce sound to improve task

efficiency.

 Speech warnings improved performance, but may be overly dominant in a presentation:

―speech did seem to im pro ve perfo rm ance durin g learn in g b ut is very intrusive‖

 Graphical representation improved perform ance: ―for th is p articular task grap h ical

representation proved to be the most preferred. Thus our contention that this spatially

orientated task w o uld be best presented b y graph ics is bo rn o ut b y experim ent‖.

Conclusion
Process control is an ideal domain for the application of an adaptive interface due to its complex

nature, and because of the large quantities of information that an operator must deal with.

Typically in times of disturbance the operator must deal with information overload. The

designers of a process control interface have many concerns, including the safety of the process

and the potential economic savings that can be made when the interface supports the process

correctly. Both of these concerns can be met by the use of an adaptive interface. Safety can be

improved with an adaptive interface by helping the operator diagnose a disturbance in the

process, by configuring the presentation so that only the most salient and relevant information is

shown. Additionally, that the information shown is rendered in the best possible fashion so that

the operator can more effectively understand the nature of the problem. By improving safety,

significant savings can be economically by avoiding expensive and potentially unnecessary shut

downs of the process.

In recent times automation has been introduced in many types of process with the aim of

abstracting away from the operator many mundane, routine tasks. This has alleviated the

 76

op erator from a great deal o f ―h ands on ‖ interactio n w ith th e system, and has often shifted their

role from control to monitoring. This introduces some problems for the operator as when the

process does deviate from normal operation to a disturbed state, the operator is frequently left

unprepared, due to their inexperience in controlling the process. They are however aided in their

tasks by improved display interfaces such as functional displays and advanced alarm filtering

systems.

However, operators are still prone to making errors and this is where an adaptive system can

help. When operators make knowledge-based errors, it is often due to an incorrect

understanding of the problem, frequently caused by incorrect interpretation of the data. An

adaptive system can help by utilising different media to highlight relevant data and configuring

the interface so that the operator is equipped with the correct information, clearly.

F or an adaptive system to function it requires a goo d pro cess and operator m o del. R asm ussen ‘s

Decision Ladder and Abstraction Hierarchy provide a good basis for constructing an operator

m o del. L in d‘s M ulti L evel F lo w M odel pro vides a goo d b asis for deducin g a P rocess M o del, an d

also for providing a representation that could potentially be useful in a process disturbance.

Another abstract representation that could be useful when the operator loses sight of the nature

of a process disturbance is the Ecological Representation, which holistically presents the process

at various levels of abstraction.

This chapter has shown that an adaptive system can be of use in the domain of process control

and has presented some useful methodologies for constructing some of the necessary adaptive

models.

The next chapter examines the underlying paradigm that the adaptive architecture described in

this thesis will use, software agents.

 77

C h a p t e r 4

SOFTWARE AGENTS

What is an Agent?
There are many different definitions of agency and it is therefore rather difficult to arrive at an

exact definition. The definitions range from this rather simple, broad description of agency:

 “A com ponent/ softw are object/ hardw are that is capable of acting ex actingly to accom plish task s on

behalf of its user.” (Nwana 1996)

to the more explicit, and tightly defined terminology of (Hayes-Roth 1995):

“Intelligent agents continuously perform three functions: perception of dynamic conditions in the

environment; action to affect conditions in the environment; and reasoning to interpret perceptions, solve

problem s, draw inferences and determ ine actions.”

Maes of the software agents research group at MIT has her own definition:

“A n agent is a com putational system that inhabits a com plex , dynam ic environm ent. T he agent can sense,

and act on, its environment, and has a set of goals or motivations that it tries to achieve through these

actions.”

FIPA (Foundation for Intelligent Physical Agents) uses a strawman definition of agency for all

their specifications (FIPA1). They define an agent as:

 78

 “an entity that resides in environm ents w here it interprets “sensor” data that reflect events in the

environment and ex ecutes “m otor” com m ands that produce effects in the environm ent. A n agent can be

purely software or hardware. In the latter case a considerable amount of software is needed to make the

hardw are an agent.”

For some researchers - particularly those working in AI - the term ‗agent‘ h as a stron ger an d

more specific meaning than that sketched out above. These researchers generally mean an agent

to be a computer system that, in addition to having the above properties, is either conceptualised

or implemented using concepts that are more usually applied to human beings. For example, it is

quite common in AI to characterise an agent using mentalistic notions, such as knowledge, belief,

intention, and obligation (Minsky 1985).

A good description of agency has been given by Franklin and Graesser (Franklin & Graesser,

1996):

“A n autonom ous agent is a system situated w ithin and a part of an environm ent that senses that

environment and acts on it, over time, in pursuit of its own agenda and so as to effect what it senses in the

future”

This definition was achieved after a careful analysis of the features common to several different

agents. Although this definition is not universally accepted, it will suffice here as a means

towards understanding the basic nature of agency.

Why Have Agents?
There are a number of reasons for employing an agent-based approach. One important reason is

the increased requirement for inter-operability between systems. This is now regarded as one of the

most important challenges to the software engineering community. Agents can provide a

convenient means of bridging the gap between heterogeneous systems without requiring

significant re-engineering of existing or legacy systems.

 79

Agents-Based Software Engineering provides a convenient means for controlling this inter-operability.

It does this through facilitating communication at a high level via a standard agent communication

language (ACL) (Genesereth, M. R. & Ketchpel, 1994). ACL allows agents (that can be as small as

sub-routines) to exchange data, scripts, small programs and so forth. This ability is significant if

agents are to have some degree of social ability, defined as the capability of an agent to exist co-

operatively within a set of agents, communicating with them, sharing tasks and delegating sub-

tasks. Social ability itself is vitally important as an enabler for agent technologies, since it allows

any agent with insufficient expertise, in a certain area, to confer with peer agents that do have that

knowledge and can thus provide the required expertise. This process allows synergy to occur

between agents, the whole being greater than the parts.

In addition, as augmented and ubiquitous computing (Rekimoto 1996) becomes more

commonplace (as it inevitably will) the need to reduce the amount of human-computer

interaction that relies on direct manipulation (Schneiderman & McGill 1988) is increasing. This is

because of the recent trend for software packages to incorporate increased functionality at each

new release, leading to current desktop being excessively feature rich. (Alexandros 1995)

In the search for a new approach, it was suggested that a complimentary method to direct

manipulation could be used whereby the computer, via an agent, could guide and help the user to

deal with, and manage, information overload. This method is termed indirect management (Kay

1989). Agents, therefore, could provide an attractive way of shifting the interface paradigm away

from direct manipulation to the domain of indirect management. This is because agents work within

the scope of the direct manipulation domain, but allow the user to better manage desktop processes

by abstracting some of the complexity away from the user. There have been many debates about

the relative merits of the indirect management approach, particularly when applied to Interface

Agents. Schneiderman (Maes & Schneiderman 1997) is a fierce advocate of the direct

manipulation paradigm and argues that interface agents take elements of control away from the

user. Moreover, he argues that interface agents are unnecessary. The main drive of his argument

is that the cause of deficiencies in the direct manipulation paradigm is not due to an intrinsic flaw,

 80

rather to bad implementation. Direct manipulation, he states, is still the most powerful interface

interaction tool, and if correctly designed and implemented makes the use of interface agents

redundant. However, since most direction manipulation interfaces cannot be re-designed,

interface agents offer a powerful alternative solution.

The agent-based approach to the indirect management paradigm is a hybrid of the two

approaches and likely to be a temporary solution to this important problem. The next stage of

interface design evolution towards indirect management may depend heavily on the success of

current agent technology, and the confidence it engenders in users. Confidence is a key factor,

since if users can be induced to engender trust in their agents to perform delegated tasks, then a

full shift to the indirect management approach might occur. In the ultimate scenario, the

interface would be composed of a quorum of agents each having expertise in its own area, and all

agents communicating between each other, and remote distributed agents to solve interface

problems. The users would merely make their requests to their local agent, and the agent would

then deal with all the technology-based problems, allowing the users to concentrate their primary

task (Negroponte 1989).

As the present time this vision is still some distance away, and currently most agents remain as

support mechanisms working in parallel with the direct manipulation interface. They observe the

user and make suggestions of better ways of doing things. They may also offer users better ways

of searching for information and filter the resulting data to provide more context sensitive

answers.

If agents can actively seek, filter and abstract information for users, this could become an

important application. As the size of the Internet increases and bandwidths increase, more

information is ported to the user at high delivery rates, it becomes increasingly hard for the user

to find the information they require from a surfeit of irrelevancy. If agents are to gain

widespread acceptance in this killer filtering operation, they will need to engender a sense of trust

in their users (Alexandros 1995)

 81

The most powerful tools for handling complexity in software development are modularity and

abstraction (Jennings & Wooldridge 1998). Agents represent a powerful tool for making systems

modular. If a problem domain is particularly complex, large, or unpredictable such as this case

within process control, then it may be that the only way it can reasonably be addressed is to

develop a number of (nearly) modular components that are specialized (in terms of their

representation and problem solving paradigm) at solving a particular aspect of it. Process control

is a natural application for intelligent agents and multi-agent systems, since process controllers are

themselves autonomous reactive systems. In such cases, when interdependent problems arise, the

agents in the systems must cooperate with one another to ensure that interdependencies are

properly managed. The agent-based approach means that the overall problem can be partitioned

into a number of smaller and simpler components, which are easier to develop and maintain, and

which are specialized at solving the constituent sub-problems.

This decomposition allows each agent to employ the most appropriate paradigm for solving its

particular problem, rather than being forced to adopt a common uniform approach that

represents a compromise for the entire system, but which is not optimal for any of its subparts.

The notion of an autonomous agent also provides a useful abstraction in just the same way that

procedures, abstract data types, and, most recently, objects, provide abstractions. They allow a

software developer to conceptualise a complex software system as a society of co-operating

autonomous problem solvers. For many applications, this high-level view is simply more

appropriate than the alternatives.

Having established what agents are and why they exist, the next step is to examine closely the

different agent types and their properties and attributes. This examination will lead to the

production of a typology of existing agents. The difficulty in achieving a standard definition of

agency, because of the wide and diverse types of existing agents and their relationships, will

become clear from this typology. It will also facilitate the introduction of terminology to be used

in critiquing between the different agents. Agents will first be classed by application, then by

function, and finally by their properties.

 82

Agents classed by Application Area
Agents can be classified in terms of the application area in which they are applied. This is not a

particularly useful classification, but it does illustrate the breadth of their application.

Entertainment Applications.
These are agent systems that include:

 Real-time and non-real-time (store and forward) user avatars for messaging, low bit-rate

communication, and shared virtual environments

 Games (autonomous interaction between game characters and with environment &

multi-player games)

 Gaming and avatar applications deployed in theme parks, arcade high-end game

machines and

 Film/video production: I) camera agents (film/video cameras with focus, reactions, etc.),

II) 3D graphical agents for storyboard design agents and avatars in computer animated

feature films, cartoons

Service Management Applications.
These are systems that involve configuration delivery of user requested services at the right time,

cost, and QoS (Quality of Service) required security and privacy issues. Examples include:

 Multimedia services

 Buy/selling services (e.g. information, material goods)

 TMN/ intelligent network management services, and

 Trip planning and guidance services (e.g. intermodal route parking-lot reservations,

individualized traffic guidance, tourism

 83

Business Management Applications.
These systems deal with management of business tasks and resources in provision of services and

carrying out business operations (Jennings, Alty et al 1996)

 They include:

 Financial services,

 Electronic commerce

 Workflow management (Levitt et al 1994)

 Office automation

 Computer Supported Cooperative Work, and

 Telecommuting

Manufacturing Management Applications.
 These systems involve physically embodied agents designed to carry out management in

relatively structured industrial environments. These processes may involve the control of

industrial robots and machines via software interfaces. Some common manufacturing

applications areas are:

 Industrial Robotics

 Factory automation (Baker 1996)

 Virtual factory management, and

 Load Balancing.

Service Robotics Applications.
These systems involve physically embodied agents designed to carry out tasks and processes in

relatively unstructured office and domestic environments (e.g. office mail delivery, house

cleaning, etc.).

 84

Cooperative Tasks Management Applications
These systems involve collection of robotics and software agents that are being coordinated to

achieve higher level tasks.

Research Applications
These systems involve using agent technology to further research in other (IT) areas such as:

 Vision processing

 Learning and adaptive systems

 Speech processing

 Distributed knowledge-based systems.

Agent Classes Defined By Function
Alternatively, agents can be separated into four different types of agent - Interface, Information,

Computational and Facilitator agents. For each category, the agent of that type serves a different and

orthogonal purpose to agents of other categories.

Interface Agents.
T h e p aradigm fo r the existen ce o f Interface A gents is based on K ay‘s (Kay 1990) dream of

indirectly managed interfaces. At present direct manipulation interfaces are the norm, despite

offering little or no proactive help or assistance to the user when performing tasks (apart from

affordance). To rectify this problem, the indirect management approach offers a vision of user

and computer co-operating together to complete a user task with greater ease and efficiency. For

this vision to become reality, agents will have to engender trust in their users by performing their

tasks competently. Otherwise users will never fully utilise the power of indirect management

because they will not be willing to fully delegate many technology-based tasks to an agent.

 85

At the moment the best practical example of the application of indirect management principles is

the use of an agent as a personal assistant. In this case the interface agent sits on a direct

manipulation interface and aids the user by performing time-consuming, laborious tasks

delegated to it. It performs a similar role to that of a human personal assistant, because users can

entrusts their assistants to perform certain mundane time-consuming tasks, leaving them free to

concentrate on more important goals.

For an Interface Agent to be able to perform these laborious tasks it is important for the agent to

gain some knowledge of the user, such th at a con text can b e draw n on the user‘s action s. W ith

such a context in p lace, the agent can understand and p erform the user‘s request m ore efficiently

and with less scope for error. Thus Interface Agents need to have some degree of intrinsic

learning ability or a means of understanding the full system context in which the user is acting.

T h is learn in g ab ility usually takes th e fo rm o f an agen t ob servin g the user‘s action s on th e

interface, and then trying to match action/reaction pairs in an attempt to find patterns in the

user‘s behavio ur. If the patterns start to b ecom e repetitive, th e interface in duces a conn ection

and will use this to recommend to the user ways that it can perform these repetitive tasks on their

behalf. However for this approach to work, the behaviour needs to be substantially repetitive.

Typical examples of Interface Agent applications are (from Maes group at MIT)

 Eager Assistants (for instance a calendar agent that has learnt that the user prefers

meetings only in the afternoon and therefore negotiates with other calendar agents on

this basis).

 Filter/Critics (Filters selected mail)

 Matchmaking/referrals (An agent uses its knowledge of user preferences to contact

oth er user agent‘s w ith sim ilar preferences. It can then forw ard any recommendations

the other user agent makes on those preferences)

 86

 Intelligent Filtering of unnecessary information, allowing the user to concentrate on the

task in hand.

Information Agents
The amount of information published doubles every year, most being published on the web.

The goal of the Information agent is to sort through these vast amounts of information and find the

specific in form ation th at the user requires. T yp ically, an in form ation agen t‘s job is to un derstan d

th e context o f a user‘s request, and then to access several on-line databases, search them and

retrieve relevant data. It m ust th en filter the resultin g data accordin g to th e user‘s specific request

so that only the most relevant information is returned.

Information agents are usually server-based (and require a log-on). However, recent trends have

seen a move towards client-based interface agents. The presence of an interface agent on the

client side dom ain w ill allo w the agen t to ob serve th e user‘s actions directly an d th us obta in better

contextual information. Information agents are similar in many ways to other types of agents in

that they have similar knowledge boundaries but they are restricted to their domain. (Sycara 1995)

Computational Agents
Computational agents serve a rather simple function, to perform on behalf of the user

computationally difficult tasks. They exist so that the user can delegate tedious computationally

time consuming tasks to the agent, therefore freeing themselves to concentrate on their main

goal. Typically, a computational agent might be asked to perform mathematical problems or to

facilitate complex install procedures. Often, this type of agent is a quite simple algorithmic-based

system , w h ich typ ically im p lem en t a ―learn b y exam ple‖ techn ique. That is, the user will initially

guide the agent through a complex procedure. Once the procedure has been completed, the user

defines th e lim its of th e agents‘ contro l, an d instances o f w h en it sho uld p erform its op eration s.

Once these pre-requisites have been complete, the agent (much like a sophisticated macro) will

 87

imitate the users approach for problems it sees as being of the same class initially defined by the

user. This type of agent, although simple, is quite powerful and can be of great use.

Facilitator Agents
This class of agent serves to link and match agents of differing expertise together. Therefore they

utilise a meta-class knowledge base. Their skill is to know where such knowledge can be found

rather than directly returning knowledge in an expertise area. They then attempt to connect the

requesting agent to the agent that has the required knowledge.

It is obvious that this type of agent will be most effective in an multi-agent system (See Chapter 5)

existing in an open environment (such as the internet). Facilitator agents perform a vital role in

the provision of information and services between a set of distributed agents.

Describing Agents in terms of their Properties
As an alternative to classification by function, agents can be defined in terms of a number of

properties that they exhibit. A property can take any value between two extreme values, for

example Autonomy and Slave, or Mobile and Static. In this section we will define a number of

property axes and later use these axes to characterise agents. This characterisation is quite distinct

from our earlier characterisation in terms of function.

The Static - Mobile Axis
A fundamental distinction of agent types can be made between Mobile and Static agents. Mobile

agents have the ability to move around a network/distributed system, whereas Static agents do

not. They access servers and perform tasks on behalf of the user. Mobile agents may report back

to proxy agents, which have requested some task on behalf of a user, as well as to the users

themselves.

 88

An example of a mobile agent performing a value-added service for a user is the air-flight

booking scenario. In this scenario a user requires the cheapest flight possible on a certain date,

and instead of browsing various airline servers at high cost in both network time and resources,

utilises a mobile agent. The mobile agent visits all the booking services for cheap flights, and

finds the best buys available within the budget set by user on the desired date. Upon completion

of its task, the mobile agent returns to the user (synchronously) with the relevant flight

information with which the user can either book a flight, or ask the agent to go back to search

again. The advantage of this method is that it provides a cost efficient way of accessing

information because the user does not have to be online whilst the agent is performing its task

A ll th e results can be returned via em ail, th us saving netw ork conn ection s and ho urs o f the user‘s

time.

The Mobile Agent approach also suggests an innovative way of providing a distributed network,

and facilitates radical ways of considering the design process. The existence of Mobile Agents,

for example, will allow computers with limited local resources to carry out more complex

operations by routing a mobile agent to a resource centre that can accomplish the task, and

awaits the return of the results.

An agent may show some degree of mobility. This quality is not an absolute attribute and will

vary depending on the task the agent is built to handle. For instance an agent constructed to

collate data on aeroplane timetables and book the cheapest and most convenient flight will de facto

have to enter the network and move around it to various online databases, and thus demonstrates

a great deal of mobility. However, if the agent‘s task is to be a guide o peratin g on th e interface on

a stand-alone machine, it will only demonstrate the weakest of mobility.

The Reactive - Deliberative Axis
Another basic distinction can made between Deliberative and Reactive agents. A Deliberative

agent is an agent that will react to a situation by referring to its internal expert system or symbolic

reasoning model and then uses this knowledge to engage in planning and negotiation activities in

 89

order to co-ordinate and co-operate with other agents. Reactive agents on the other hand do not

have this symbolic reasoning ability, and instead rely on a stimulus/response paradigm, whereby

they react to the environment in a hard-wired fashion.

Much of the prevalent theory in AI suggests that deliberative symbolism is one of the key functions

of agency, meaning that an agent should have an internal plan representing actions, goals and

events that determines its reactions to real world situations. This approach has been contested

for its inflexibility, after all - it is argued - although human beings in real life may follow a plan,

there is much improvisation in the details of the plan. This - researchers argue- cannot happen

with deliberative agents (Agre & Chapman 1987), and so the concept of reactive agents was

suggested, whose choice of action is based upon situated action theory.

In contrast to Deliberative Agents, Reactive Software agents have no built-in planning or

symbolic logic to cope with changes in environmental conditions. Instead, they use a

stimulus/reaction effect to dynamically react to changes in their external environment. The

smartness of these agents comes from the emergent behaviour of the interaction of the various

modules, that is to say, the synergy effect of many low level (reactive) agents working together.

Maes (Maes 1991), highlights three key ideas that underpin reactive agents. These ideas are as

follows.

 The dynamics of interaction between these simple unintelligent agents should lead to

emergent complexity.

 A reactive agent is usually viewed as a collection of modules that operate autonomously

and are responsible for specific tasks (e.g. sensing, motor control, computations etc.).

Communication between these modules is usually minimal and low-level in nature.

 A reactive agent tends to function on representations that are close to raw sensor data, in

contrast to high-level representations used by other types of agents.

 90

 Such agents generally consist of Actuators and Sensors connected together by a hard-wired

reaction path. (Brooks 1991). In this way any change in environmental conditions will result in a

discrete ch an ge in th e agent‘s actuators, and th is chan ge w ill always be the same providing the

environmental condition are always identical.

The benefits of such agents are they are fault tolerant, simple and easy to understand, flexible and

adaptable. Many reactive agents are based on a state machine basis. The key use of reactive agents, at

the present moment, seems to be in the entertainment world, where they are used in Video

Games, to add an extra element of challenge.

Other uses include modelling of real world situation. For instance, research has been carried out

on ant colonies by modelling each ant as a reactive agent programmed to react to certain

situations. In this way the real world can be brought into the computer world and simulated

using reactive agents to model the behaviour of simple life forms.

Little work has been done on implementing reactive agents theory. The work that has been

done, has only served to point out the limitations of this type of agent.

(Maes, 1991) argues that an integration of both reactive and deliberative approaches will deliver

the best service to the user. After all, by definition, agents are bounded by their knowledge base,

and are therefore limited to the specific area for which they have been designed. These so-called

Hybrid agents take the strength of one type of agent and apply it to the weakness of the other.

This manifests itself in the form of a somewhat layered architecture whereby there is a deliberative,

cognitive side that plans out the strategic long/middle term plan and a reactive side where the

agent responds to stimuli received from its reactive agent components. The reactive agents

provide the much-needed flexibility at the sharp end, and will respond rapidly to changing

situations as dictated by the hard-wired logic between sensors and actuators.

There are few of these Hybrid systems in existence at the moment, although the argument for

them is overwhelming. The ones that do exist are generally application specific and usually

 91

designed in a rather ad hoc way. This is certainly an important area for future research, especially

for the development a more generic architecture underpinned by AI theory.

The Loner – Cooperative Axis
Co-operation is an important property for an agent. It is what makes them so attractive as a

software tool. For co-operation to work properly, some sort of communication language is

needed to enable an agent to communicate with other agents and human beings.

The raison d‟être of collaborative agents is simple - synergy - that is the whole is greater than the sum

of the parts. Because there is such a need for heterogeneous systems to communicate together, a

great deal of research work has gone into collaborative agent development, and the term has

become largely synonymous with the generic term agent. This is unfortunate, as the term agent

should encompasses so much more. A rather striking example of this misuse of the term can be

see from Lotus at a Symposium on agents at MIT in 1992 (Foner 1993). A respected member of

the Lotus team presented a version of Lotus 123 that made collaboration between multiple

spreadsheet users easier. The whole presentation was trying hard to shoehorn its multiple user

so ftw are into an ―agent-oriented p iece‖, th e so ftw are w as quite clever b ut the L otus team w ere

co nfusin g the so ftw are‘s m ulti-user ability with collaborative agency.

Typically, collaborative agents usually deal with tasks such as:

 interconnecting several legacy systems (For instance; systems that do not directly talk to

each other, or are necessarily aw are o f the other‘s existen ce, b ut w ho com m un icate usin g

an agent as a proxy)

 enhancing modularity (reduced complexity), speed (via parallelism), reliability (redundancy),

flexibility (tasks are composed more readily from modular organisations) and reusability

Within the field of Collaborative agents much work has been done in attempting to find ways of

improving the negotiation principles behind inter-agent communication. This has led to agents

being attributed with pseudo-emotions and mental attitudes (Shoham 1993). These attitudes

 92

encompass agents having beliefs, desires and intentions. Such, so called, epistemic qualities are used as a

means of leveraging power in negotiations. The approach is much contested within Artificial

Intelligence, with some researchers arguing that agents should have more than these three

attributes, and others saying they should have none at all.

The Slave - Autonomy Axis
Autonomy refers to the ability of agents to work on their own without recourse to human

intervention. Hence autonomous agents have their own goals that they strive to achieve on the

user‘s b eh alf. A key elem ent of autonomy is the agent‘s ab ility to b e proactive and take the initiative.

Agent autonomy can vary from fully autonomous agents that rely very little on the user to slave

agents that simply adhere immediately to the users wishes when called upon.

The Rote – Learning Axis
Lastly if agents are to be truly useful in the long term, then the ability to learn is important. This

is because learning allows an agent to improve its performance over time, by finding the best

ways of performing its tasks. For example, there are four ways in which an Interface Agent can

learn about the user and domain models and gain competence. (Maes 1994).

 T h ey ob serve an d im itates the user‘s rep etitive beh avio ur

 T h ey adapt, b ased on the user‘s feedb ack. (Indirect: e.g. notices w h en th e user

ignores th e Interface A gent‘s advice and learn s from th is e.g. D irect N egative:

U ser says ―don ‘t do th at again ‖

 They can be trained by the user on the basis of examples (user stipulate rules)

 They can ask and obtain advice from other users agents, who may have

experienced something this user agent has not.

An agent can use any combination of these. For instance if an email interface agent receives an

email and does not know what to do with it, it can automatically refer to its peer agents for

 93

advice. The user can instruct the Interface Agent to ask for a specific agent X for advice if a

problem comes up that it does not know how to deal with (perhaps someone in a similar job

who the user thinks can be trusted to make similar decisions to themselves). The most commonly

used of these techniques, is memory based reasoning (Stanfill & Waltz 1986). Memory Based

R eason in g in vo lves the agent co m p arin g the user‘s current action w ith a previo us list o f exam p les

gen erated by m on itorin g the user‘s past action s, and co rrelating how close its predicted action is

to the actual action. As a result, a list of confidences can be built up for certain actions, this list

being reinforced by comparing it with other agents (its neighbours) for similar actions. If its

confidence about a decision is above a certain numerical threshold of confidence (Some

weighting metric, say 95 times out of 100 the user has done the same thing), then it does it

autom atically an d in form s th e user o f its action s. T his is th e ‗D o -it‘ T h resho ld. B elow this is the

‗T ell-m e‘ th resho ld, w here the con fidence is less, so the agen t in form s the user o f its decision and

asks whether it should carry it out, before doing it.

 This concept of thresholds allows for the trust issue to be satisfactorily dealt with. This is

because these agents incorporate, within them, a sliding scale such that if the user has complete

confidence in its agent they can L O W E R th e thresho ld for ‗D o -it‘, co n versely if th e user h as no

trust in the agent th e ―D o -it‖ th resho ld is raised to 100%. Prolonged use of the agent should

allo w the agent to predict actio ns m ore accurately, and so it is expected th at the ‗D o -it‘ thresh o ld

will gradually be lowered over time.

 94

Describing an Agent along the Property Axes
All agents that currently exist will exhibit these properties, to some extent to a greater or lesser

degree.

Figure 8 Agent Properties

So, in the example above, the agent is highly static, reactive, loner, autonomous and with some learning

ability. Such an agent might be an information retrieval agent. For example an information

retrieval agent is mobile, and reacts to changes in the external information base. However, it may

exhibit some learning so as to adapt its state based on user activity. It acts on the users requests

as well as pro-actively when it senses the user requires information, and as such is reasonably

autonomous.

Critique of Existing Agent Applications
Basis of Critique
In order to provide an understanding of the current state of agent technology a number of agent

implementations will be compared on our defined property axes. These axes as previously

described are:

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 95

 Static - Mobile

 Reactive - Deliberative

 Loner - Cooperative

 Slave - Autonomy

 Rote – Learning

These orthogonal factors provide a framework from which the different agent implementations

are assessed. In addition comment will be made on the following attributes:

 Utility

 Usability

 We have assigned a scale of 0-10 to our axes, where 0 represents the simplest property

and 10 the more complex property. These scores are based on the judgment of the

author alone.

Interface Agents
Many Interface agents actively assist in the operation of the interface. They offer ways in which

the user can cut down on the amount of work they need to achieve a computational task. For

instance such agents may help by automating the filtering of email, or by offering short cuts to

frequently used highly repetitive user actions.

Example 1: Magic Cap for Windows by General Magic
This agent, by the makers of mobile agent communication language Telescript, is an integrated
organiser and communications package. It allows the user to maintain contacts, keep track of
appointments and organise personal and professional information. It also lets the user exchange
information with other windows applications and sends files as attachments.
Evaluation

Static-Mobile Axis
This agent is completely static. 0/10

 96

Reactive-Deliberative Axis
Again, it has no deliberative ability, but due to its good interface and comprehensive
functionality it often appears more intelligent than it is. 5/10
Loner – Cooperative Axis
 This agent has some cooperative ability in that it can communicate with various other
heterogeneous applications, however within our frame of reference it a loner. Although, it
does perform some cooperative actions they are not with other agents to achieve a goal,
rather they are simple interactions with non-intelligent, non-proactive applications. 3/10

Slave-Autonomous Axis
The user is firmly in charge here. Although the agent does have some freedom to perform
actions w itho ut the user‘s con sent, th e freedom is set b y a user-defined set of actions. Thus
the agent is free to sort mail, but only according to instructions set by the user.
This agent is a reactive type agent, as it has no intrinsic deliberative reasoning, rather it reacts
to changes in the environment. This can take the form of sorting mail as it arrives, or
sending a reminder email if the date/time reaches a certain pre-defined threshold. So within
the structure of the agent the user is in control at all times, whether setting appointments or
defining the email type to be filtered. 5/10
Rote-Learning Axis
The agent has limited learning ability. It is adaptable only so far as most aspects of it can be
altered or personalised according to user preferences. Therefore it is not dynamically
adaptable nor does it possess any inherent intelligence. 2/10
Utility
This agent is very useful indeed. It provides a link and acts a proxy between several usually
distinct applications. Thus when using the appointment manager, the user can set an alarm
or get an email to be sent directly from the appointment manager. In addition, if the user
sets an appointment with a certain person, Magic Cap automatically provides an email that
stipulates the time/date/location of that appointment and sends it to the person required.
T o add to th is, M agic C ap exam ines any em ail th at arrives an d takes the sen der‘s n am e an d
email address and automatically stores them in the address book. This address can then be
used in the appointment manager, which demonstrates the systems ability to inter-operate
between heterogeneous packages.
The email editor is quite powerful and includes the ability to attach files and also allows
graphics (of which it has an extensive library) or sound bites to be included in the mail. This
agent seems fairly useful. However, it does not seem to quite justify the tag of being an
intelligent agent (not that this affects its usefulness). After a short while it becomes easy to rely
on Magic Cap for setting appointments and sending mail. 8/10
Usability
This software is extremely easy to use and learn. Upon initial instalment of the software,
Magic Cap takes the user through a comprehensive and easily understandable introduction,
and uses a Wizard type interface to complete the required set-up. After only a few minutes
usage the main characteristics of the agent can be learnt and used.

 97

The interface is powerful and easy to use, it uses as its basis a desktop metaphor, whereby
there is a desk with a fax machine (for Faxing), In/Out boxes (for email), Calendar (for
Appointment Manager) and a Notebook (for leaving notes). These desktop metaphors are
typical of the rest of the package in that they demonstrate good affordance. The on-line help
is useful throughout and overall this agent is an impressive piece of software. 8/10

Figure 9 Magic Cap for Windows Adaptation Characteristics

Example 2 Microsoft Agent
This agent‘s task is to in fo rm /entertain the user. It does th is b y takin g on th e anthrop om orph ic
form of a blue Genie. This genie is loaded into the system and lays dormant until activated by
the user accessing a Microsoft Agent enabled web site. The genie then appears on screen and
interacts with the user using utilising an audio connection (using voice synthesis) and a visual
connection (its words appear in the familiar cartoon style bubble). In addition to these features
the genie has speech recognition capabilities and therefore allows the user to auralise questions.
Evaluation

Static-Mobile Axis
This agent is completely static. 0/0
Reactive-Deliberative Axis
The Genie itself has only limited adaptation ability. It often appears more intelligent than it
actually is due to the impressive array of features that can be accessed in many ways by web
sites. 3/10

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 98

Loner – Cooperative Axis
Limited cooperative ability, the agent needs to cooperate with other genie enabled wed sites
to perform its function. However the interaction is very limited and involves no more than
simple handshaking, and primitive information exchange. 5/10

Slave-Autonomous Axis
Although largely controlled by the user, this agent does have some autonomy in that it
activates itself when accessing an enabled site. 4/10
Rote-Learning Axis
It has little significant learning ability. 3/10
Utility
This agent appears to be used primarily for entertainment purposes, although it does have
some rather clever speech recognition and character movement routines incorporated into it.
The Genie system does have considerable scope for improvement and promises to be one of
the more successful of agents. It is envisaged that the genie will be used as an interactive
help/guide agent. The genie will use its natural language processing ability to understand the
users‘ request and then use its kno w ledge b ase to o ffer potential an sw ers to the users‘
problems. At the present time it has been used to great effect as a guide on selected web
sites, in which it can take the user on a pre-defined tour and offer useful information. 8.5/10
Usability

The Genie Agent system is difficult to use due to vague instructions, and due to low
transparency it is unclear whether the agent is running or not. Once installed, however, little
more needs to be done, as the Genie appears automatically whenever a web page with Genie
capabilities is accessed 8/10

Figure 10 Microsoft Agent Adaptation Characteristics

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 99

Example 3: Web Browser Intelligence By IBM

This is a very useful agent and one of the few that demonstrate some learning ability. The
W eb B ro w ser In telligence (W B I) by IB M enh an ces the user‘s ab ility to use the W orld W ide
Web by acting as a personal assistant. This agent is typical of the new breed of client based
agents, which operate away from a centralised server and allow a much more direct contact
with the user. It has the following functionality:

 It remembers everywhere the user has been.

 It allows the user to search through information that they have seen

 It notices p atterns in the user‘s w eb bro w sin g

 It w atch‘s the user‘s favo urite w eb p ages fo r ch an ges

 It tests the speed of the links from pages to let the user know if they are fast or slow

 It provides the user with both proxy and socks connectivity independent of the browser

 It m akes th e user ―B ro w ser Indepen den t‖ so they can sw itch brow sers and not lo se
information

 It lets the user look back in web time to see how the user has visited pages in the past

 It improves productivity using the web.

Evaluation

Static-Mobile Axis
This agent is completely static. 0/10
Reactive-Deliberative Axis
This agent has a reasonable deliberative faculty although it does seem rather difficult to get it
to suggest shortcuts. This could be a problem due to the often stochastically nature of web
surfing. 6/10

 100

Loner – Cooperative Axis
The agent demonstrates some degree of cooperation, although in essence it is a stand
alone, loner type agent. It demonstrates cooperative ability in terms of utilizing
heterogeneous applications, and in its ability to proactively monitor and assess external web
sites. 3/10
Slave-Autonomous Axis
The locus of control with this application lies in the application domain, because the agent
supervises the uses actions and does tasks for them without their consent or knowledge. 9/10
Rote-Learning Axis
It is one of the few agents that demonstrate any form of adaptability. This ability stems from
its almost unique stance of having some intrinsic learning ability. To do this, it observes the
patterns of behaviour that emerge as the user surfs the web. It uses these patterns to note
which sites the user visits frequently and what sites they have just come from. By doing this
it can then offer shortcuts to these sites, and inform users of how long it should take to
accesses them. It does this by showing a small icon next to the link, which can be one of
three colours Red, Yellow or Green. Where Red is the longest delay and Green is the
shortest. 7/10
Utility
Excellent application, it really does what it sets out to do and certainly does make using the
web a far more pleasant experience than it currently is. Its ability to learn also makes it very
valuable as it notes which pages are visited most often and offers short cuts. It also
highlights links that may be slow, so that the user can chose alternative browsing paths. One
of the most useful agents around. 9/10
Usability
The system is easy to install since it configures the web browser settings automatically, and
this takes away a lot of fairly complex setting up procedures. It takes away much arduous
boot strapping required of agents of this type. This capability is provided through its learning
ability, and therefore does not require the user to enter pages of forms stating their favourite
web sites. It also does not require the user to save pages manually. It merely advises and
allows users to browse off-lin e or choo se short cuts to p ages it h as recom m ended. T h e users‘
main task, therefore, is to directly request WBI to watch certain web page and notify them of
any changes. 8/10

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 101

Figure 11 Web Browser Intelligence Adaptation Characteristics

Example 4: Intel Pattern Recognition Agent
The Intel Selection Recognition Agent is an experimental software application that dynamically
gen erates hyp erlin ks betw een info rm ation on th e user‘s desktop, relevant app lication s and W W W
sites. When text is copied to the clipboard, the Selection Recognition Agent attempts to recognise
objects such as email addresses, U R L ‘s o r keyw ords in the text. A s a result, an icon on th e
desktop indicates the type of object recognised. A right mouse-click on the icon displays a menu
of possible operations. Users can launch a browser with a specified URL, look up a definition of
a word, send email, or find information about a geographic location.
Evaluation

Static-Mobile Axis
This agent is completely static. 0/10
Reactive-Deliberative Axis
This agent is fundamentally reactive, although it has some reasoning with regards to its ability
to pick out key functions the user is accessing. 6/10
Slave-Autonomous Axis
The locus of control for this agent, as in the above example, lies in the domain of the agent.
As users perform tasks the agent monitors actions, and suggests ways to improve their
working: 8/10
Loner – Cooperative Axis
As in previous agents this is a stand-alone application that interacts with other non-agent
applications. Therefore, it demonstrates some primitive cooperative ability but not in the
pure intelligent agent sense. 3/10

Rote-Learning Axis
The interface has some degree of adaptability and intelligence. It can, for instance,
differentiate between the names of major cities and verbs. It therefore recognises, to some
degree, the context and meaning of some of the highlighted text. 6/10
Utility
This agent is quite useful since it attempts to integrate many of the applications that reside on
the desktop and offers some sort of continuity between them It therefore makes the process
of obtaining information from the web a great deal easier than is normal. An example
interaction might be a user writing a paper in Word and wishing to obtain some information
on New York City. Upon highlighting New York in their Word document, the agent has the
ability to instantly spawn a web browser containing information regarding New York. Since
the agent is also linked up to address books, date tools and email managers it can launch all
of these applications if necessary. So if the user sees an email address in a hypertext

 102

document they can highlight it and the recognition agent will offer the user the opportunity
to w rite it to their em ail app lication‘s address boo k or to sen d an em ail to th at person . It is a
powerful application, which has the useful facility of allowing the user to access several
heterogeneous applications though one single interface, and as a consequence it has many
benefits over current systems. 8/10
Usability
When installing this agent the system requires the user to enter the file location of their
desktop address book, email application, calendar manager and web browser. This
information is often not known to the user. Therefore, this makes it difficult for the user to
install the agent correctly. In many other applications the agent locates such tools
automatically, and offer the user the option of choosing which tools they require. Therefore
the installation procedure is slightly more difficult that perhaps it could be. As for the actual
interface itself, it is reasonably good. It has easy to understand icons and it uses audio cues to
inform the user that the information selected has been recognised by the agent. 8/10

Figure 12 Intel Pattern Recognition Agent Adaptation Characteristics

Information Agents
Some Information agents, typically, roam over the Internet to access various databases

attempting to collect data that the user has requested. Thus they are typically shopping type

agents, where the agent will attempt to find the cheapest product at a variety of on-line shops.

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 103

Example 1: LiveAgent by AgentSoft
This agent development platform allows users to create their own agent. The agents created by
LiveAgent simply follow instructions dictated to them by the user, and the user whilst browsing
sets their p ath of action s. A s users visits vario us sites th ey can ‗save‘ certain sites o r htm l p ages.
T h e L iveA gent records the U R L ‘s for these p ages, and then , at a later date, can b e set to retrieve
updates and return them to the user. For example, personalised newspaper of information can be
gathered by the agent and returned for the user to peruse, off-line if necessary.
T h is type of agent is the arch etyp al ‗M ob ile‘ agent in th at the user do es not h ave to be connected
for the agent to work, or indeed need to be online. The agent retrieves the pages independently
after visiting each site.
Evaluation

Mobile – Static Axis
The agent is completely static. 0/10
Slave – Autonomy Axis
T h e agent do es no t in terfere w ith the user‘s p rim ary go al, an d th us the locus o f control is
firmly defined by the user. In fact the agent does nothing more than the user requires and
stipulates. In this sense the agent has no control because the user defines the sites visited and
what pages are to be stored for retrieval. However once the user has stipulated their requests
th e agent acts w ho lly autonom o usly an d perform s the user‘s secon dary go als o f retrievin g th e
pages without user assistance. 4/10
Reactive – Deliberative Axis
Although the agent is undoubtedly useful, it exhibits no signs of having any reasoning ability.
It merely follows the user instructions to the letter and has no inherent ability to reason about
its own actions. 1/10
Loner – Cooperative Axis
Shows very little cooperative ability, this is a loner type agent. 2/10

Rote – Learning Axis
This agent shows little sign of adaptability. It has the ability to enter form data on html
pages. Thus if the agent accesses a password entry form, it can enter the user defined
password. 3/10
Utility.
The agent does perform several important timesaving functions. Once the initial difficulty in
using the software has been mastered it becomes a powerful tool for obtaining information.
For instance, if users require the latest news in telecommunications, they can define an agent
that will visit several on-line daily telecommunications magazines and return the latest news
sections in each. Thus the user can develop several agents, each of which is specialised in
obtaining certain types of information. The user may have a Sports Information Agent or a
Financial Information Agent etc. The most practical example of this is the Search Agent that
is provided with the software. The user provides it with a search string and the agent then
visits several on-line search engines looking for information related to that string. Upon

 104

gathering all the results from several databases it eliminates all the redundant and common
information and returns the filtered results to the user. Finally, this agent can save a great
deal of money for modem users, as it can be set to download and retrieve information during
the night, or whenever the cheap rate occurs. 7/10
Usability
The software is quite tedious to install and get working correctly, and at the time of review is
a beta release and thus had several bugs. These bugs rapidly became infuriating and limited
the extent to which the agent could be tested. For instance, several problems were
encountered when trying to record certain web pages, which resulted in the software crashing
and losing a great deal of work done up to that point.
Another problem encountered was the inability of the agent to recognise user-defined
bookmarks within Netscape. This means that the user cannot surf by selecting their normal
bookmarks. Instead they are forced to type in U R L ‘s m an ually, w h ich rap idly becom es very
tedious and time consuming.
The actual software itself was reasonably easy to learn and use, and the interface was simple
with well-defined icons. 6/10

Figure 13 LiveAgent Adaptation Characteristics

Example 2: Waldo The Web Wizard.
This is a service which attempts to interest the user in a range of sites they may not have
previously visited. It does this by asking the user several questions about their lifestyle, the type
of car they drive, their pastimes, their news interests etc. From these questions the Web Wizard

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 105

offers a list of potentially useful sites catered for user tastes. Not only does it offer sites of
interest, but it also offers commercial sites where users can purchase items that may interest them.

Evaluatation
Mobile – Static Axis
This agent is completely static 0/10
Slave – Autonomous Axis
In this case the user is firmly in control. The agent does not attempt to exercise any control
or steer proceedings. The user is presented with a series of questions, and possible answers
which are represented as a series of graphical representations of situations or items. The user
selects the graphical representation they feel most appropriately answers the question. This is
all the input the user is required to enter. From these answers the agent provides a set of
recommendations based on the questions. 3/10
Reactive – Deliberative Axis.
There is no significant demonstration of reasoning ability. It did, however, have an
interesting method of assessing the accuracy of the answers given. It produced a summary of
its interpretation o f th e user‘s preferences, b y w h icb the user can assess th e system s accuracy.
The results of this user-based assessment is used to refine its answers 4/10
Loner – Cooperative Axis
Once again a stand alone client application, that does demonstrate some cooperative ability
by interacting with a central server which connects and makes assumptions about a users
browsing patters by comparing them with others. Therefore demonstrates some cooperative
ability 4/10.

Rote - Learning Axis.
This agent showed no sign of learning, it appeared to utilise a primitive algorithmically based
m ethod of selectin g w eb sites b ased on the user‘s input. 1/10
Utility
The mechanism by which recommendations are made is basic. It does not seem to have a
multiple comparison feature, instead it attempts to directly match answers given to
appropriate web sites without reference to previous answers. Therefore, the web sites
recommended are often a set of predicatable sites that could easily have been discovered
using traditonal search methods with far less investment. 3/10
Usability
The interface for this agent is fairly usable. It uses an anthropomorphic image of the agent to
interact with the user. Although in many cases this type of interface can lead to overhead at
the interface, here it worked reasonably well. The system displays multiple choice answers to
the questions in the form of cartoon pictures. This method allows more ambigous answer to
questions to be presented, as each image can be interpreted in a variety of ways.
However, the way the agent gathered its results was discovered to be unsatisfactory. It
selected only one choice from several possible options, therefore rejecting two or three
equally valid cho ices. F or exam p le , a typ ical question the system asks is ―w h ich p art o f a

 106

new sp ap er do yo u m o st en jo y?‖. T h is question m ay h ave several po ssib le an sw ers, for
instance a user may enjoy the sports section, but equally they may also like the science and
techno lo gy section s. B y an sw erin g the question w ith a sin gle rep ly ―Spo rt‖, the list o f
suggested sites returned was biased wholly towards sport based sites, therefore ignoring the
users other interests in science and technology. Perhaps a system based on order of
preference w o uld b e a better w ay of evaluatin g each user‘s requirem ents. 5/10

Figure 14 Waldo The Web Wizard Adaptation Characteristics

Example 3: Firefly Network.
T h e firefly netw ork is the p ractical, com m ercial version o f som e o f M aes‘s w ork. It
predominantly uses memory-based reasoning techniques to achieve a degree of reasoning ability.
In addition to these techniques, it uses a much improved version of the similarity engine for
recommending titles of music and books to users.

It works, as most of these class of agents do, by users answering an extensive set of questions
about themselves. From these questions the agent recommends titles of music or film and sites
that the user may find interesting. It also attempts to cross-reference these recommendations. For
example, the system might use its knowledge of all the movies the user likes to match them to
another user with similar tastes. Once it has matched a user, the system answers this is the basis
for making recommendations on subjects that were not the basis of the recommendation. So it
might make a user match based on user taste in movies, and use this as a basis for recommending
music titles. The system claims to make better recommendations the more it is utilised.

Evaluation
Static-Mobile Axis
This agent is completely static 0/10
Reactive-Deliberative Axis
It demonstrated some degree of intelligence in its ability to utilise learned information and
applying it to obtain a context from which data is selected. 7/10

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 107

Slave-Autonomous Axes
This is one of the few systems where the locus of control is firmly biased towards the agent.
This is because the user has no specific goal in mind other than requesting recommendations.
For the agent to achieve this goal, it must be equipped with as much information as possible.
Therefore, from the outset it retains the locus of control by asking a series of questions.
These questions form the basis for other suggested web sites based on recommendations
from oth er user‘s agents o f sim ilar tastes. T h us the user is alw ays responding to requests as
opposed to directing them. 8/10
Loner – Cooperative Axis
Central server based agent that shows some cooperative abilities, by interacting with other
server systems to cross-reference users preference with those of similar preferences. 5/10

Rote-Learning Axis
This is one of the few interface agents that showed any learning ability. Its adaptability is
evident in the way it learns and acts on users preferences over time. 7/10
Utility
This agent system is not wholly effective, due in part to the nature of its operation. It suffers
because its expertise in the application domain is completely based on the premise that it can
use other peop le‘s tastes as a recom m endation system , w itho ut regard to context. It
suggestions are often nonsensical and seem to bear no relevance to the information the user
has entered. In addition, the presumption that the system can use different criteria as the
basis for recommendations is a bad one. It does not seem to work.
This system suffers from a lack of incentives, since it only really works when people make new
suggestions to the database. Otherwise the system stagnates and recommendations are soon
out of date with current culture, and thus the effectiveness of the system is stifled. Most
users merely want to get recommendations from the agent and not to wish to utilise valuable
time on making recommendations of their own. This is a problem that needs solving if the
system is to truly succeed. However, the system is more sophisticated than other agents of
the same type. As a consequence its results are generally of a higher quality. 7/10
Usability
It is not an easy system to use, it takes a reasonable amount of time to learn how to use and
become adroit at handling the interface. It is not immediately obvious how things work, and
the on-line help is almost useless. It uses an applet system whereby the user has a Firefly
passport, separate from the main browser window, where the user selects their options from
a menu. 6/10

 108

Figure 15 Firefly Adaptation Characteristics

Computational Agents
Example 1: Jini Prolog Engine Service
Jini Prolog Engine Service (JPES) is a Jini (Jini is a Java programming interface that enables
embedded devices to utilise JAVA) service that provides remote Prolog engine services to Jini-
enabled components in the network. Using the Jini architecture, JPES provides a flexible
infrastructure for distributed components to gain access to its Prolog engine. JPES makes AI
techniques like rule-based programming, constrained problem solving, knowledge sharing etc.
available to the development of the next generation ―intelligent‖ distrib uted system .

Evaluatation
Mobile – Static Axis
This agent is completely static 0/10
Reactive – Deliberative Axis.
JPES is a reactive type agent that does not deliberate on its actions. It acts reactively to
requests from other agents for it services. 2/10
Slave – Autonomous Axis
JPES is a fully autonomous agent service that does not directly interact with the user. Rather,
it offers services to other agents. It therefore is highly autonomous. 9/10
Loner – Cooperative Axis
An agent whose purpose is to act cooperatively, it provides services for other Jini enabled
agents. 9/10

Rote - Learning Axis.
Since the agent does not interact with the user, it has nothing to learn from. In fact it
operates as a service and therefore operates by rote. 1/10
Utility
JPES provides a very useful service to JINI enabled devices. It enables these devices to
access intelligent services and utilise its PROLOG engine to return computationally
demanding and logical tasks. 8/10

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 109

Usability
Not applicable, this agent does not directly interact with a user. The agent programmer
interaces are quite straightforward though 3/10

Figure 16 Jini Adaptation Characteristics

Facilitator Agent
Example 1: Ozro Negotiate
Ozro Negotiate is the negotiation engine at the heart of the Ozro Agreements application suite.
This technology is designed to facilitate people-centric, iterative, and multi-attribute negotiation,
providing services by prompting, capturing and synchronizing communications.

Evaluation

Mobile – Static Axis
This agent is completely static 0/10
Reactive – Deliberative Axis.
Ozro is a reactive type agent that does not deliberate on its actions. It acts reactively to
requests from the user for its services. 2/10
Slave – Autonomous Axis
Ozro provides services for the user by finding other appropriate agents that can fulfil the
users requirements. 7/10
Loner – Cooperative Axis
A fully cooperative agent whose role is to facilitate communication between other agents, that
acts as a hub making it fully cooperative. 9/10

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 110

Rote - Learning Axis.
Ozro operates as a service and does not learn. 0/10
Utility
Ozro provides a useful service, facilitating the discovery and negotiation with other
distributed agents. Its expertise comes from its knowledge of other agents abilities and the
services they offer. It is a useful agent in the e-commerce sector. 8/10
Usability
The user does not interact directly with the agent, rather they issue a request. 3/10

Figure 17 Ozro Negotiate Adaptation Characteristics

Special Issues relating to Interface Agents - Competence, Trust

and Limitations of Autonomy
Interface agents have special requirements and responsibilities because they interface directly with

human beings. Firstly, there is the issue of TRUST. Will a human being be sufficiently confident

about the performance of an agent to trust the agent to provide the right service? Secondly, there

is a related issue of COMPETENCE. Can the human user have confidence that the agent is

competent to carry out the service. Finally, since the human being and the agent are co-operating

Loner

Reactive

Rote

Slave

Static Mobile

Deliberative

Co-operative

Autonomous

Learning

 111

on solving a task, there is the important question of how much delegation or autonomy is

acceptable. This latter point is also connected with the PURPOSE of an agent.

Competence and Trust.
Maes (Maes 1994) has suggested the following questions in relation to competence and trust:

 How does an agent acquire the knowledge it needs to decide when to help the

user?

 How does it decide WHAT to help the user with?

 Finally HOW does it help the user?

 How confident can the user feel with the agent, when delegating tasks to it?

The ways in which an Interface agent can be implemented affect the levels of competence and

trust attained. To illustrate the point three implementation methods will be examined – End-

User Derived, Knowledge Based and Learning Agents.

Method 1: End User Derived

This method involves the end user defining a set of rules to the agent (say for dealing with email).

The agent then goes about automatically performs these tasks without explicitly confirming its

intentions to the user (Lai, et al 1988).

This method is often effective for very simple tasks, but is highly inflexible. Any software using

this method does not really deserve to be termed an agent as it amounts to no more than a simple

script for dealing with lists. When assessing this approach, it is clear that this method has poor

competence due to the large amount of work the end user and developer have to put in. This is

because the users have to examine their activities, assess their own habits and formulate strategies

to deal with those habits. The trust level, however, is high because the user has stipulated exactly

what the agent should be doing and the agent has no facility to do anything outside of these user

 112

defined boundaries and thus cannot break them. A better technique would be to use a hybrid

approach whereby the mainline goal of the user is performed using this method, but a learning

based interface is also incorporated.

Method 2: Knowledge Based Approach

Another approach is the Knowledge based Approach (Sullivan 1991). Here the agent is given

knowledge about the application domain, and the user, at the outset. The agent then may have

the ability to recognise the user‘s p rob lem s an d either correct them w h en w ron g or p ro vide

advice.

This method has problems with competence and trust. From a competence point of view, this method

is very inflexible as it can only be used in the specific domain it was designed for due to the heavy

specialised expertise needed (i.e. A UNIX help agent would be useless for EMAIL). Lastly, the

approach is highly inflexible, as there is no facility for learning from the user. From a trust point

of view, it is rather unnerving for a user to be presented with an agent that knows everything

from the start. Schneiderman (Maes & Schneideman 1997) argues that this can leave the user

bewildered with a feeling of loss of control.

Method 3 Learning Based Interface

This method was developed by Maes (Maes & Kozierok 1993) and is a learning based interface

agent. Here the agent starts with a minimum of knowledge in either the user or application

domain but has the capacity to learn. Therefore for this agent to work successfully two criteria

must met

 that the user application must involve repetitive behaviour of some sort, to a

substantial degree (otherwise it will never learn)

 that other users have different repetitive behaviours (Otherwise these learning

based agents offer no advantages over knowledge based agents)

 113

This approach is termed a personal assistant metaphor. The agent starts knowing nothing but

learns over time. This approach offers a solution to the problem of trust since the user has time

to get to know the workings of the agent, as well as the agent getting to know the working of the

user. In addition this method allows the agent to present explanations for its decisions based on

p ast exam p les (i.e. ―I did th is because yo u liked it like th is last tim e‖).

The Purpose of an Agent and the Issue of Delegation
Many existing definitions of agents involve the functionality of an object. However the purpose of an

ob ject is an im portant quality, sin ce w ith in the scope o f th at agent‘s p urpo se th e functionality can

be fulfilled in whatever way the designers see fit. For instance, the purpose of a window is, “to allow

hum ans to see through it” . Within that scope many window builders might construct windows with

this functionality yet allows the windows to be tinted, or etched, as long as they still fulfil their

defined purpose.

A ny defin ition o f an o b ject can b e com po sed o f tw o p arts; firstly a sum m ary o f th e o b ject‘s

attributes and secondly a descrip tion o f the ob ject‘s purpose. Thus a shopping window object can be

described firstly in terms of its attributes:

“A transparent piece of glass (that it has the attribute of being composed of glass, and has the

attrib ute o f b ein g tran sp arent)‖

 and its purpose:

―It allows humans to see goods through it and protect the goods from different environm ents and theft”

 To give a full definition of:

 114

“A n transparent piece of glass that allow s hum an beings to see goods through it and protect the goods from different

environm ents and theft”

One problem with many agent definitions is that they tend to be biased by th e author‘s

view p o int. T h us they o ften con sist o f the author‘s view of w h at properties an agent sho uld

demonstrate, and not what the purpose of the agent is.

So to cite some examples given earlier:

Nwana (Nwana 1996): “ A com ponent/ softw are object/hardware which is capable of acting exactingly to

accom plish task s on behalf of its user.”

Here Nwana gives us a very nebulous definition, such that the attributes are vaguely described as

“A com ponent/ softw are object/ hardw are”, where the functionality is described as ―..accomplishing a

task on behalf of its user. ―

This is not encompassing enough. What kind of task? What is the purpose of the agent? We

kno w it is ―capable of...accom plishing task s on behalf of its user” but is that all it does? This definition

leaves a lot unexplained, and inadequately describes the purpose.

(Hayes-Roth 1995):“Intelligent agents continuously perform three functions: perception of dynam ic

conditions in the environment; action to affect conditions in the environment; and reasoning to interpret

perceptions, solve problem s, draw inferences and determ ine actions.”

This is a definition, which does not describe at all the properties of an agent. Instead it provides a

list of functions an agent should perform, with no idea of why agents exists, or of what their

purpose is.

 115

E ven th is defin ition‘s m in im al attem pt at tryin g (an d failin g) to define the p urpo se o f an agent :―

to interpret perceptions, solve problem s, draw inferences and determ ine actions”, is just describing a basic

agen t‘s functio nality.

Locus of Control and Agent Purpose.
It is self-evident that an agent should carry out tasks on behalf of the user. It is also clear that an

agent should not overstep its authority. The basic problem is to define how much authority

sho uld b e delegated to an agent so th at it can w ork efficiently on th e user‘s beh alf, w ith o ut

causing unintended damage. The problem centres round the concept of locus of control. Should

control be wholly in the user domain (that is the agent is strictly user controlled, with minimum

autonomy or decision making capability), or wholly in the agent domain (the agent is able to

make every decision without user consent and has the ability to act as a user at every instance,

with full user accountability and power). To better understand how the locus of control should

be set it is necessary to examine the relationship between user and agent, and the purpose of an

agent.

What is the Purpose of Agents
It is hypothesised here that agents exist only to provide services to human beings, carrying out

support applications on computer systems in order to allow the human beings to improve their

efficiency and effectiveness at particular tasks. The agents exist to take over some of the

technology-based problems encountered in everyday work away from the user. However, their

purpose must also encapsulate some of the degree of control, so that they are helpful without

becoming troublesome or irrelevant. The initial definition of purpose – that an agent should

perform a goal on behalf of the user, gives too much responsibility to the agent, and could take

aw ay contro l from the user. F or instance, if the user‘s go al w ere to edit a w ord docum ent, the

user would not want an agent to cut and paste without any user intervention. Even with the best

of intentions, some control would be needed.

 116

Thus it is argued here that a better definition of purpose should be:

 ―To perform user defined sub-goals w ithin the boundaries set by a m utually acceptable service level agreem ent” .

 These are usually the tedious and technology dependent tasks, which need to be done, but only

the answer is relevant. The actual method employed is not important as far as the user is

co ncerned. F or in stan ce, a user‘s m ain lin e go al m ay b e to receive email. An agent could perform

all the underlying sub-goals such as decoding certain mails or unzipping certain files etc. The

detail of how these sub-goals are achieved is not important to the overall user mainline goal. The

User might want all mail filtered from a certain source. However, the way in which the filtering is

achieved is important and can affect the result. In this case the user needs to be involved and it is

unlikely to be completely delegated.

So the agent must carry out the sub-goal of the user in such a w ay it does no t affect th e user‘s

prim ary go al. T here are m any w ays of in advertently an d adversely affectin g the user‘s prim ary

go als, an d so th e agent m ust have a clear idea of w h at th e user‘s prim ary go al is, an d to w h at

extent it can carry out its tasks.

Dealing With The Locus Of Control
At the initialisation phase of the agent, the locus must lie firmly in the user domain. Upon negotiation

of the required limits of action between the user and agent it is likely that there will be an overall

user oriented locus of control. However, when the primary sub-goal has been defined, the locus

of control moves over to the agent domain, at which point the agent is free to perform its tasks,

without user interference. This approach hinges upon the establishment of an appropriate limit

of service and prime goal definition within a service level agreement.

 117

Figure 18 Diagram Showing The Locus Of Control At The Various
Stages of Agent Operation

A New Agent Definition:
We can attempt an initial definition of agency utilising the principles stated previously and the

preceding sections on agent properties and purpose.

―An agent is a piece of software that to some degree demonstrates the following attributes; Autonomy, Reasoning,

Mobility, Co-Operation and Learning AND whose primary goal is to fulfil, in the best way possible the sub-goals

of the calling agent (w ho m ay be a hum an agent), defined in by a m utually agreeable service level agreem ent”

It can be argued that this definition does not include those agents, which only ever fulfil the

requirements of ANOTHER agent. It can be argued that it does because ultimately agents

answer to human beings, so however far down a chain of inter-linked agents, each will only be

fulfilling the sub-goals of the agent directly above. As a consequence each agent contacted might

on ly be fulfillin g a very sm all p art of the user‘ sub -goals. There are no agents in existence, as far

as the author is aware, that have constructed themselves for their own benefit. All have been

created by humans with a purpose in mind. That purpose is the fulfilling of their sub goals.

 118

 Figure 19 Use Of Service Level Agreements

We can see this idea in Figure 19, where a user is utilising an agent to execute a sub-goal that is

needed by an application. In this case, the primary goal may be finding the email address of a

colleague and pasting it into the application. Thus the sub-goal is the process of obtaining the

required email address by searching various expert databases. As an abstraction of the initial

user‘s sub -goal, a service level agreement is negotiated which requires the agent to provide the

Email address of a colleague. This limits the autonomy. The user-agent then requests the help of

Expert Agent1 to fulfil this sub- goal of finding the email address. However, Expert Agent1

finds it does not have all the knowledge necessary to fulfil the request, so it requests the help of

Expert Agent2. Expert Agent1 negotiates an SLA with Expert Agent2, which might further

restrict the sub-go al. E xpert A gen t2 then attem pts to fulfil E xpert A gen t1‘s sub -goal. When

completed the results ripple back up and are used by the user agent to return the results to the

app lication an d therefore fulfils the user‘s primary goal. All the agents involved above, use an

ab straction o f the user ‗s sub -goals as a primer from which to fulfil their obligations to their peer

agent.

 119

Conclusion
Agents are essentially intelligent objects that have the ability to proactively operate and react

within an environment. They provide means of taking data abstraction within an object a step

further, and provide means of encapsulating an abstract knowledgebase. Agents provide a good

solution to complex problems/systems (such as process control) because of their modular

nature, complex problems need to be broken down into smaller problems, and individual agents

can represents each of the smaller broken down parts of the problem or system.

Agents have been used in many different application domains such as business management,

manufacturing and service-based applications. Within these domains different types of agents

exist such an interface and information agents. Interface agents attempt to move the interface

paradigm away from direct manipulation to indirect management. For indirect management to

be accepted by a user the key issues of trust and competence must be addressed.

Several fundamental properties of agents can be derived such as: static/mobile,

reactive/deliberative, loner/cooperative, slave/autonomous and rote/learning. These properties

can be defined by the context in which the agent must operate, and the purpose of the agent.

G enerally, sp eakin g an agent‘s p urpo se is to fulfil the sub-goals of a user.

T h e agen t system discussed in th is thesis ob eys th e defin ition of agent p urpo se. T h e op erator‘s

primary goal is to operate the process as efficiently as possible with minimum number of errors.

The adaptive system performs the sub-goal of ensuring the interface is as well configured as

possible to allow the operator to perform the primary goal, and concentrate on operating the

system without having to perform unnecessary and superfluous interactions.

An implicit part of the agent definition is the use of mutually acceptable service contracts that

define th e agent‘s lim its of action. T hese contracts are o f prim e im portance fo r op en system s,

but since the process control domain is closed loop and is not instantiated every time the

operator uses it, the contract need only be defined once. This definition occurs at design time by

 120

system designers who configure the adaptive system. They define the extent of the adaptation

and the limits of powers the agents have to configure the interface. There is no pre-defined

contract, as a contracts prime use is within an open system, rather the contract is implicit within

the system configuration.

This chapter has shown why agents are an ideal paradigm for adaptive interface construction in

the process control domain. The agent system used utilises a mix of knowledge-based interface

and information agents, and will operate on a direct manipulation interface, but adapt it using

indirect management principles. It has reviewed existing agent applications, to learn what aspects

of agents work well and which do not. The results of these lessons are applied in the

architecture. A new definition of what agents are was defined. This definition was used to clarify

the role the agents play within the adaptive system. The issue of locus of control was addressed

and an initial solution was arrived at. Within our closed loop system the definition of control is

implicitly captured within the design time configurations of the system.

The next chapter builds on the issues reviewed in this chapter and examines the area of multi-

agent systems.

 121

C h a p t e r 5

MULTI-AGENT SYSTEMS AND PROCESS CONTROL

Why use Multi-Agent Systems in process control?
The previous chapter described the use and function of agents, and multi-agent systems, however

it did not mention why agents lend themselves for use in the process control domain. This

chapter will attempt to describe the rationale for this choice.

There are several defining factors (Parunak 1999) that make agents particularly suitable for this

type of application.

Modularity
Agents are pro-active objects, and share the benefits of modularity that have led to the

widespread adoption of object technology. They are best suited to applications that fall into

natural modules. An agent has its own set of state variables, distinct from those of the

en vironm ent. Som e sub set o f the agent‘s state variab les is co up led to som e sub set o f the

en vironm ent‘s state variab les to pro vide inp ut and o utp ut.

The process control domain, makes a good candidate for agent-hood since it has a well-defined

set of state variables that are distinct from those of its environment, and its interfaces with that

environment can be clearly identified. The state-based view of the distinction between an agent

and its environment helps us understand why functional decompositions are less well suited to

agent-based systems than are physical decompositions. Functional decompositions tend to share

 122

many state variables across different functions. Separate agents must share many state variables,

leading to problems of consistency and unintended interaction. A physical decomposition

naturally defines distinct sets of state variables that can be managed efficiently by individual

agents with limited interactions.

Decentralised
An agent is more than an object; it is a pro-active object, a bounded process. It does not need to

be invoked externally, but autonomously monitors its own environment and takes action as it

deems appropriate. This characteristic of agents makes them particularly suited for applications

that can be decomposed into stand-alone processes, each capable of doing useful things without

continuous direction by some other process.

Changeable
Agents are well suited to modular problems because they are objects. They are well suited to

decentralized problems because they are pro-active objects. These two characteristics combine to

make them especially valuable when a problem is likely to change frequently as would be the case

in a disturbed state of process control. Modularity permits the system to be modified one piece at

a time. Decentralization minimizes the impact that changing one module has on the behaviour of

other modules. Modularisation alone is not sufficient to permit frequent changes. As Figure 20

suggests, in a system with a single thread of control, changes to a single module can cause later

modules, those it invokes, to malfunction. Decentralization decouples the individual modules

from one another, so that errors in one module impact only those modules that interact with it,

leaving the rest of the system unaffected.

 123

Figure 20 Modularity + Decentralisation = Changeability

Ill-structured
In traditional systems, an architecture of the application is often produced that shows which

entities interact with which other entities, and specifying the interfaces among them. Recently

these have been in the UML format. However, sometimes, determining this information in

advance is extremely difficult or even impossible. From a traditional point of view, an application

is ill structured when not all the specifications can be provided at design time. Such a situation is

a natural one for the application of agent technology. The fundam ental distin ction in an agent‘s

view o f th e w orld is b etw een ―self‖ an d ―en vironm ent.‖ ―Self‖ is kno w n an d predictab le, w h ile

―en vironm ent‖ can chan ge on its o w n w ith in lim its. O th er agents are p art o f th is dyn am ic,

changing environment. Depending on the complexity of individual agents, they may or may not

model one another explicitly. Instead of specifying the individual entities to be interconnected

and their interfaces with one another, an agent-based design need identify only the classes of

entities in the system and their impact on the environment. Because each agent is designed to

interact with the environment rather than with specific other agents, it can interact appropriately

with any other agent that modifies the environment within the range of variation with which

other agents are prepared to deal.

 124

Some applications are intrinsically under-specified and are thus ill structured, and agents offer the

only realistic approach to managing them. Even where more detailed structural information is

available, the wiser course may be to pretend that it is not. A system that is designed to a specific

domain structure will require modification if that structure changes. Agent technology permits

the analyst to design a system to the classes that generate a given domain structure rather than to

that structure itself, thus extending the useful life of the resulting system and reducing the cost of

maintenance and reconfiguration.

Complexity
One measure of the complexity of a system is the number of different behaviours it must exhibit.

Typically, the number of different interactions among a set of elements increases much faster

than does the number of elements in the set. By mapping individual agents to the interacting

elements, agent architectures can replace explicit coding of this large set of interactions with

generation of them at run-time.

Just as well-structured systems can become ill structured when viewed over their entire life span,

so a system that appears to require only a few behaviours can become more complex as it is

modified in response to changing user requirements. By adopting an agent approach at the

outset, it is possible to provide a much more robust and adaptable solution.

Implementation Issues
According to (Gasser & Bond 1998), in order to obtain coherent system behaviour, individual

agents in a multi-agent system should not only be able to share knowledge about the problems

and solutions, but should also reason about the processes of coordination among other agents.

(Hewitt 1986) claims that in a multi-agent system there is no possibility of global control, globally

consistent knowledge, global success criterion, or even a global representation of the system, so

the task of coordination can be quite difficult. The inherent difficulties encountered in

 125

implementing coordinated behaviour in any multi-agent system as identified by Gasser in are as

follows (Gasser 1991).

1. Communication: How to enable agents to communicate? What communication

protocols to use?

2. Interaction: What language the agents should use to interact with each other and

combine their efforts?

3. C o herence an d C oo rdin ation: H o w to en sure th at the agent‘s coordin ate w ith each

other to bring about a coherent solution to the problem they are trying to solve?

Aside from these inherent implementation difficulties in a Multi-agent System, there are also

practical issues of assuring that pre-existing (legacy) applications can be integrated into agent-

based applications and used in agent communities. Thus, specific attention should be paid to this

whilst choosing a tool for multi-agent application development. The choice of a proper tool can

arm the developer with many advantages, while being careless about it can prove to be

constraining in the long run. Chapter 7 provides an in-depth, detailed discussion of agent and

system building tools.

Communication
Communication enables the agents in a multi-agent system to exchange information on the basis

of which they coordinate their actions and cooperate with each other. This raises the important

question of what communication protocols and mechanisms are conducive to enhance

collaboration between communicating agents. In a multi-agent system several ways have been

proposed for agents to exchange information with each other. Agents can directly exchange

messages, or they can organize themselves into a federated system and communicate through

special facilitator agents, or they can broadcast the messages.

 126

Another popular approach used to enable agents to intercommunicate is through a shared data

repository (called a blackboard) in which information can be posted and retrieved (Chaib-draa et

al 1996).

The three approaches can be summarized as follows:

Directed communication.
Directed communication involves establishing direct physical links with other agents using a

protocol such as TCP/IP, which promises safe arrival of message packets by implementing end-

to-end acknowledgments. The physical link implies that the agent has to be aware of all the other

agents in the system. Agent addresses may be obtained either as part of received broadcast

messages from other agents or from a centralized object (for example the AgentNameServer in

JATLite as explained in Chapter 7) like a directory service where all the agents joining the system

register. A sender agent can access the addresses of the receiver agents by looking at this

centralized object. Registering is like a start-up process for the directory to learn about all the

agents in the system. The FIPA 1997 Specification, V 1.0 (FIPA 97), specifies that any multi-

agent system compliant with their specification should have an Agent Directory which contains

information about all the agents in a particular environment and facilitates identifying and

accessing of agents. A directed communication mechanism is used in most existing agent building

languages and platforms. In situations where an agent is engaged in a dialogue with a particular

agent, and knows exactly who to send the message to, directed communication makes sense.

Federated Systems.
When the number of agents in a system becomes very large (e.g. in a setting like the Internet) the

cost and processing involved in directed communication is prohibitive (Genesereth & Ketchpel

1994). A popular alternative to directed communication that eliminates these difficulties, is to

organize the set of agents into federated system. Within a federated system, agents do not directly

communicate with each other. Instead, they communicate through special facilitator (mediator)

agents. Here a set of agents has a facilitator who is kept informed about their individual needs

 127

and abilities. Agents can also send application-level information and requests to these facilitators

and accept application-level information and requests in return. Facilitators use the information

provided by these agents to transform these application-level messages and route them to

appro priate p laces. In effect, th e agen ts fo rm a ―federation ‖ in w h ich th ey surren der their

autonomy to their facilitators and their facilitators take the responsibility of fulfilling their needs.

FIPA 1997 Specification (FIPA 97) defines a specialized Domain Facilitator agent for each

domain whose job is to maintain an Agent Directory for that domain and facilitate

communication between agents of that domain.

Broadcast communication.
 In situations, where a message has to be communicated to all the agents in the environment, or

the sender agent does not know who the recipient will be (like when it announces a task and has

to choose from all possible agents that can perform that task) then according to Tilley (Tilley

1996), it has two choices: it can either physically broadcast the message to all the agents in the

system, or it can maintain individual communication links with all the agents in the system and

send each one of them a directed message (using the TCP/IP protocol). When the message

length is substantial, and there are a large number of agents in the system, the network bandwidth

used to transmit the message is significant. Maintaining individual links implies that multiple

copies of the same message have to be sent to each receiving agent.

Broadcasting, on the other hand, prevents network overloading by doing away with the need of

making multiple copies of the same message and transmitting them to different agents. It helps in

implementing a totally autonomous, scaleable and flexible multi-agent system as agents can leave

or join a system without needing to inform anyone, provided they have completed all the tasks

they were engaged in, which affected the actions of other agents. It is not uncommon to

implement a hybrid approach by using broadcast communication to find identity and addresses

of agents in the community, and then use that information to engage in directed communication.

 128

Two main, popular approaches in broadcast communication are: the contract-net approach and

the specification-sharing approach. The contract-net approach was proposed by Davis & Smith

(Davis & Smith 1983). In the contract-net approach to inter-operation, agents, in need for

service, distribute requests for proposals (broadcast messages) to other agents. The recipient of

these messages evaluates those requests and if capable, submit bids (directed message) to

originating agents. The originators use these bids to decide which agent gets the contract

(directed message) for the broadcasted request. In the specification-sharing approach, agents

broadcast their capabilities and needs and other agents use this information to coordinate their

needs and actions.

Broadcast communication over the web is popularly referred to as webcasting (Frivold 1994).

The strength of webcasting lies in the fact that the Internet can be used to transmit highly

complex video, audio and other multimedia signals to any number of users all over the world.

Blackboard-systems.
 In AI, the blackboard is an often used model of shared memory (Chaib-draa & Moulin 1987). It

is a repository on which agents write messages, post partial results, and obtain information. It is

usually partitioned into several levels of abstraction appropriate for the problem at hand, and

agents working at a particular level of abstraction have access to the corresponding blackboard

level along with the adjacent levels. In that way, data that has been synthesized at any level can be

communicated to higher levels, while higher-level goals can be filtered down to drive the

expectations of lower level agents.

Interaction: An Introduction to Speech-Act Theory
Gasser defines interaction to mean a type of collective action wherein one agent takes an action

or makes a decision that has been influenced by the presence or knowledge of another agent

(Gasser & Bond 1988). It is an inherently distributed concept as it is based on the coordinated

action of participating agents. Since action in the system is usually goal-directed, many

 129

interactions are derived from goals. This is an important basic concept in implementation of

multi-agent systems as it is the process of interaction that makes it possible for several intelligent

agents to combine their efforts (Gasser & Bond 1988).

The inherently heterogeneous and distributed nature of a multi-agent system makes the

implementation of interaction among agents a difficult process. Thus, a prerequisite for the

successful development of multi-agent systems is an expressive common language for

communication, with agent-independent semantics through which agents can communicate with

their peers by exchanging messages, interacting together through explicit linguistic actions. In

fact, this is where agents differ from objects. Objects can interact with each other by accessing

object dependent public methods, but these methods may differ from one object to another. The

agent communication language in a multi-agent system should be independent of the agents and

independent of their internal data structures. This necessitates the need to know what knowledge

to represent for communicating and how to do it. As communicating agents will have different

knowledge bases, the communication language system must allow for these differences, so that

communication and cooperation will succeed despite these disparities (Gasser & Bond 1988).

Thus each agent needs a linguistic layer supporting an agent-independent semantics system,

which provides a message-based interface that is independent of th e agent‘s internal data

structures and algorithms.

In the multi-agent systems, community speech-act (Austin 1962) theory is one of the most

common methods used for constructing the linguistic layer and for formalising the linguistic

actions of agents. Speech Act theory (Austin 1962) has made major contributions to

un derstan din g th e relation sh ip betw een an agent‘s intern al state an d th e utterances it exch an ges

with other agents. It conceives communication and interaction in a framework involving goals

for utterances, a knowledge of the participants, and planned actions for changing that knowledge

to provide a unified description of action and communication where communication is treated as

actions. It originates from the observation that utterances by agents are not simply propositions

that are true or false, but actions that convey some belief or knowledge or an intention. Speech

 130

Act Theory uses the concept of performatives to allow an agent to convey its beliefs, desires and

intentions. The performatives are the speech-act component of the language and determine what

on e can ―do ‖ or ―perfo rm ‖ w ith th e content of th e m essage. F or exam p le, perform atives

―assert,‖ ―affirm ,‖ ―state,‖ con vey a belief, p erform atives ―ask,‖ ―order,‖ ―en jo in,‖ ―p ray,‖ or

―co m m and‖ con vey a w ish or a desire, and perform atives ―vo w ,‖ ―p ledge,‖ or ―prom ise‖ co n vey

an intention (Searle 1969).

A speech-act language, which is commonly used in the multi-agent community, is KQML

(Knowledge Query and Manipulation Language). KQML is a DARPA Knowledge Sharing

Initiative contribution. It facilitates high-level cooperation and interoperation among artificial

agents (Finin & Wiederhold 1993). Such agents may range from simple programs and databases

to more sophisticated knowledge-based systems and they communicate by passing

―perform atives‖ to each oth er. K Q M L p erform atives form th e heart o f th e lan guage. K Q M L

supports many different performatives.

The FIPA 1997 Specification V 1.0 (FIPA 97) defines an interaction protocol as an explicitly

shared multi-agent plan containing communicative acts (like speech-acts). The specification

formally defines the language semantics, using a Semantic Language SL. SL propositions are

expressed in a logic of mental attitudes and actions and formalised in first order modal language

with identity and can be used for actual representation of message content. The mental modal of

an agent is based on the representation of three primitive attitudes: belief, uncertainty and choice.

A fundam ental prop erty o f SL ‘s propo sed logic is that the modelled agents are perfectly in

agreement with their mental attitudes.

Parunak (Parunak & Van Dyke 1996) suggests using case theory as an alternative formalism for

analysing the behaviour of individual agents and their interaction with each other. According to

him, it is an important tool whose value for engineering agent-based systems has been

demonstrated at three levels - Knowledge Representation, Identifying Agents and Modelling Behaviour. The

universal nature of cases suggests that they represent a fundamental characteristic of human

 131

thought, one that transcends cultural and linguistic differences. Such a fundamental characteristic

is of vital importance in engineering artificial systems.

Heterogeneous Collections Of Agents.
These involve an integrated approach whereby different agents can communicate as part of a

larger system. To this end several languages have been developed such as ACL (Agent

Communication Language) (Genesereth & Ketchpel 1994) that offer several advantages over

other stand-alone agent systems:

 Stand alone applications can gain synergy by integrating with other stand alone

applications.

 The Legacy problem can be overcome by allowing older non-agent systems to interact

with new agent systems, thus reducing costly re-writes.

 Agent based systems provide a radical new approach to software engineering, whose

ramifications can not be guessed a priori

It has often been noted that agent-based software engineering is similar to Object Oriented

engineering. It does, however, differ in the fact that the meaning of messages in Object Oriented

engineering may differ between different objects (Polymorphism), whereas this is not the case in

Agent Based Software Engineering. Although not strictly an agent language, Java is widely used

as the basis for most agents, and is the base from which standard agent languages are developed.

Interestingly, Java removes the concept of Polymorphism and Operator Overloading.

An important case for the use of heterogeneous agents is in Legacy systems. Here three approaches

can be taken. The first is to re-engineer the software such that it fulfils its functionality but also

exists in agent form; this however is prohibitively expensive. Secondly, a proxy agent acts as an

intermediary and can send and receive information to other agents but communicates back to the

Legacy system in the native language of the Legacy system (a Translator). Lastly, a wrapper

 132

approach can be taken, whereby some code is injected into the Legacy system that encapsulates it,

and can therefore access the internal data structures directly. This method is regarded as the best,

most efficient method, but it does require the source code to be available.

Most of the systems currently available user the transducer (proxy) approach, whereby information

systems have an agent front end attached, and therefore talk to other agents via the proxy agent.

Conclusion
Multi-agent systems make an ideal building platform for complex, ill structured domains such as

process control. They have several key properties that make them particularly suitable in these

domains such as modularity, decentralised, changeable, and ill structured and complexity.

When considering multi-agent systems it is imperative that the correct software language and

tools are selected to match the problem domain (Chapter 7).

Multi-agent systems will operate completely ineffectively if the wrong intra-agent communication

strategy is selected. It is important then, that at design time the communication strategy is

incorporated into the system design. Key communication strategies include directed, federated

and broadcast communication.

Not only must a general strategy be selected, but also the protocol of message passing must be

defined. Speech act theory provides a useful basis for intra-agent message parsing, and KQML is

a widely used protocol in heterogeneous multi-agent systems, where ontology and syntax are vital

to agents correctly recognising the semantic meaning of a message.

This chapter has shown how well suited multi-agent systems are to developing an adaptive

system for process control. It has also highlighted how important a clear communication strategy

 133

is for correct agent operation, and how important it is to select the most appropriate agent

building tools for the job.

The next chapter examines the nature of the specific adaptation problems encountered in a

process control environment, and discusses some multi-media principles and heuristics that could

be incorporated into the system to address these adaptation problems

 134

C h a p t e r 6

THE WHY, AND HOW, OF ADAPTATION

Introduction
Given that adaptation, in principle at least, offers a way forward for improving operator

interfaces, two really important questions remain before an implementation can be effected.

 Why should the system adapt? What are the rules governing the adaptation process itself

 How should it adapt? What are the basic elements or units that can be adapted and what

rules should be applied in the process

The Nature of Adaptation
In order better to understand the nature of adaptation in AMEBICA, it is necessary to examine

the phenomenon of adaptation in general. The main defining characteristic of an adaptive system

is

 “its ability to m aintain a stable state or an equilibrium in spite of disturbances and influences from the

outside. In extreme cases when the disturbance is prolonged, an adaptive system will modify its internal

state so that the disturbance is now part of normal conditions.‖

This definition supports two different views of adaptation. In the former case, the organism

reacts in a temporary way, reverting to its original state when the disturbance is removed. In the

latter case, when the disturbance persists for a long time, the internal state of the organism

changes to match the nature of the disturbance so that the organism is eventually in a normal

 135

state in the presence of the disturbance (i.e. the disturbance is no longer a disturbance). In this

situation the re-establishment of the original conditions will now be seen as a disturbance.

However, it is difficult to envisage a Supervisory and Control System switching permanently into

a new state (except in so far as start-up and shut-down might be classified as separate states).

It is therefore necessary to distinguish between short-term adaptation (or intelligent reaction) and

longer term true-adaptation. W e say ―intelligent reaction‖ because adaptation m ust be m o re th an a

simple reaction to a stimulus (for example, a pop-up window appearing when a button is

pressed). From now o n th erefore th e th esis w ill concentrate upo n ―intelligent reaction ‖ rather

than permanent change of state.

The purpose of adaptation in process control, therefore, is to maintain the system's ability to

perform according to its specifications, i.e. to maintain its equilibrium state. This is true regardless

of whether the adaptive system is a technological system, a human operator or a team, or - more

interesting for AMEBICA – a joint human-machine system. The joint system of human team and

machine must be able to maintain performance at an acceptable level, despite potentially

disrupting events. This is achieved by activating an appropriate response to the disturbance.

During this response the goals of the system, hence the nature of its performance, may change,

for instance from keeping the system running in a stable state, to establishing a safe shutdown

state. In either case the performance must remain within acceptable levels. This happens, of

course in conventional systems. However, it is the operators who have to do all the adapting.

What we are seeking is a more equitable system where the interface system itself contributes to

the adaptation process.

Consider the temperature regulation of the human body, which entails a kind of thermostat.

Human beings can only function if the body temperature is kept within rather narrow limits,

around 37.4 C. Whenever the body temperature becomes too high, e.g. during fever or vigorous

exercise, a number of functions are activated to cool it down, such as sweating and increased

blood circulation. Conversely, when the body temperature becomes too low, a different set of

 136

functions are activated, such as shivering, retraction of blood circulation from the extremities

(cold fingers), etc. Both effects can be amplified by changing the environment, or moving to a

different environment (moving to a cooler place or a warmer place).

The example shows two main characteristics of adaptation. Firstly, that there must be a set of

conditions for starting and stopping the adaptation – specifically a set of initiating conditions or a

triggering event. Secondly, there must be one or more appropriate responses or functions that

can be used to respond to the disturbance. The initiating conditions mean that compensating

functions are not activated all the time, but only when certain conditions are reached or a certain

threshold has been passed. (Conversely, the functions cease when another set of conditions has

been fulfilled.) Any adaptive system must therefore entail a definition of the initiating conditions

and a specification of the functions that are activated when the initiating conditions are met.

More generally, the initiating conditions can be seen as defining a specific goal, namely that the

disturbance or deviation has been neutralised or counterbalanced. The compensating functions

must be capable of achieving this goal – without at the same time introducing new disturbances

in the system or the environment.

Adaptation will therefore not be activated all the time, but only when certain conditions are

reached or certain thresholds have been passed. A set of initiating conditions or triggering events

is thus needed to begin adaptation. Once this has been decided, one or more appropriate

responses or functions are needed to activate the adaptation process, which will cease when some

defined terminating set of conditions has been fulfilled.

There are only two main sources of information that will give a guide as to whether the system

(man and machine) is deviating from equilibrium - the actions of the operators at the interface,

and deviations in the process state. Whatever triggering mechanism is eventually decided, the

source of adaptation information must be combinations of the operator state and process state.

The adaptive response functions can only be a set of recommended modifications to the

rendering system.

 137

The Notion of an Adaptability Matrix
To help designers building an adaptive process control interface, an Adaptability Matrix has been

developed that captures the above general mapping principles between triggers (operator and

system state changes) and actions (modifications to the renderings). The dimensions of the

matrix consist of the identifiable operator states on the one hand and the identifiable process

states on the other. The current proposal (a very limited first attempt) has four operator states

and three process states leading to a matrix with twelve cells.

The matrix has the following four operator triggers.

 Normal response: The responses of the operator are normal, i.e., the operator is capable

of handling the situation. No loss of control is recognised.

 Delayed response: Some responses of the operator are delayed. Normal time responses

for certain categories of events are exceeded.

 Erratic response: The operator sometimes fails to perform actions correctly enough to

warrant attention but not enough to be considered disorganised.

 Disorganised response: The frequency of erratic responses is so high that performance

is considered disorganised. The operator has clearly lost control of the process, and

cannot maintain the overall goals. The loss of control may also be determined in terms of

the strategies adopted, such as opportunistic search.

The matrix has the following three process state triggers.

 Normal process state: The process is in a normal state, as defined by key process

parameters (e.g. critical functions or safety functions).

 Disturbed process with high information rate: Typically, the information rate is high

when a disturbance occurs and for a limited period of time thereafter.

 138

 Disturbed process with low information rate: This case corresponds to the later stage

of a disturbance, when the rate of information has gone down, but the process still has

not been recovered.

These, of course, are not the only set of triggers possible. There could be a rich variety of triggers

perhaps more fine grained than these. However, even these relatively simple triggers are difficult

to measure (particularly the operator triggers), so we have tried in the first instance to keep them

simple. The matrix (with its triggers filled in, but not the adaptive functions) is shown in Figure

21.

Figure 21 The Triggers in the Adaptation Matrix

Whilst process-overload and process-underload conditions are not too difficult to measure,

measuring the operator states is more problematic. In this first raw cut approach, Delayed

Operator
response

Normal

Delayed (relative
to expected
responses)
Erratic
(occasionally
wrong display or
commands)
Disorganised
(constantly
wrong display or
commands)

Process status
normal

(2) Inattentive.

(3) Confused, loss
of control.

Process state
disturbed, high
information rate

OK, no action

(4) Overloaded.

(5) Overloaded.

(6) Severe loss of
control.

Process state disturbed,
low information rate

OK, no action

(7) ―F rozen‖.

(8) Partial loss of
comprehension.

(9) Complete loss of
comprehension.

(1) Inattentive:

OK, no action

 139

Response will be indicated by significant delays in alarm answering, Erratic Response by

inconsistent delays including wrong commands, and Disorganised Response by random delays

and wrong commands.

As far as adaptive functions are concerned, no action is taken if the operator response is normal.

The process may be in a disturbed state but the combined operator-process system is handling it.

The rest of the function cells are currently filled in with a suggested description of the probable

operator state, varying from inattention to loss of comprehension.

Operator
response

Normal

Delayed (relative
to expected
responses)

Erratic
(occasionally
wrong display or
commands)

Disorganised
(constantly
wrong display or
commends)

Process status
normal

(2) Inattentive.
Accentuate
presentation
(specific)

(3) Confused, loss
of control.
Go to overview
presentation

Process state
disturbed, high
information rate

OK, no action

(4) Overloaded.
Filter information,
simplify
presentation

(5) Overloaded.
Simplify displays,
remove information

(6) Severe loss of
control.

External Help

Process state disturbed,
low information rate

OK, no action

(7) “F rozen”.
Repeat recent
information. Try alternate
representation

(8) Partial loss of
comprehension.
Switch modality

(9) Complete loss of
comprehension.
Go one level up,
summarise info.

(1) Inattentive:
Accentuate
presentation

OK, no action

Operator
response

Normal

Delayed (relative
to expected
responses)

Erratic
(occasionally
wrong display or
commands)

Disorganised
(constantly
wrong display or
commends)

Process status
normal

(2) Inattentive.
Accentuate
presentation
(specific)

(3) Confused, loss
of control.
Go to overview
presentation

Process state
disturbed, high
information rate

OK, no action

(4) Overloaded.
Filter information,
simplify
presentation

(5) Overloaded.
Simplify displays,
remove information

(6) Severe loss of
control.

External Help

Process state disturbed,
low information rate

OK, no action

(7) “F rozen”.
Repeat recent
information. Try alternate
representation

(8) Partial loss of
comprehension.
Switch modality

(9) Complete loss of
comprehension.
Go one level up,
summarise info.

(1) Inattentive:
Accentuate
presentation

OK, no action

Figure 22 Suggested adaptive functions in various conditions

The matrix is then populated with suggested adaptive functions. For example, in cases of

information over-load some form of filtering might be appropriate, whereas in under-load

 140

situations moves to higher levels of representation might be more appropriate. The current

suggestions are shown in Figure 22.

For each cell two descriptions are given. The first, in normal typeface, represents an assumption

regarding the operator state. The second, in bold, is the response goal of the adaptive system.

Some of them are clearly also of an illustrative nature, such as External Help – meaning that it is

necessary in some way to communicate with the operators to order and get them back to the

situation. Note that the normal situation is not confined to the normal state of the process, but

may also include disturbed states where the operators have no problems in responding correctly

and bringing the process back on the track. Here adaptation should be avoided, since the

operators should not be needlessly subjected to unnecessary disturbance.

As an example, consider the cell in the middle, corresponding to erratic operator performance

an d a disturbed pro cess state w ith h igh in fo rm ation rate. T he ―diagno sis‖ of the o perato r state in

this situation is information or task overload. The situation is one where there is a large amount

of information coming to the operator, and the fact that there are a number of incorrect actions

suggests that he or she is not completely in control of the situation. Assuming that the

―diagnosis‖ of operato r o verlo ad is correct, a reason ab le go al is to sim p lify the presented

information by removing unnecessary information. This goal can be passed on to the specific

adaptive system agents, who will (hopefully) have appropriate responses ready. In practice, this

could be achieved by zooming out to a higher level of abstraction, removing detail information

such as process measurements, removing unimportant alarms, or highlighting essential features.

The Adaptability Matrix tells the adaptive system what to do in general terms when the triggering

conditions are met – HOW to trigger adaptation. All these triggers will then involve manipulating

the interface in some way – in other words the renderings will be adapted. Adaptation can be of

many forms – accentuation, switch of medium, switch of representation, higher or low level

views, and alterations to presentation such as zooming or translation.

 141

More Detailed Discussion of Possible Adaptations.
In this section we attempt to illustrate use of terms in the matrix. In each case, the symptom,

state, and adaptation function will be presented.

Normal System State – Delayed Actions
Symptom: alarms are outstanding for longer periods than necessary. Acknowledgements are

outstanding.

State: In this state there is no reason for operators to delay their responses. Thus the state

implies that operators are inattentive (they may be on the telephone or talking amongst themselves

or simply day-dreaming). The adaptive response therefore is to draw their attention to any

delayed alarm responses – to accentuate the presentation of the relevant conditions in some way.

Adaptation: We call this Accentuation Adaptation. It could be of various types. One possibility is a

switch to audio alarms. Another to highlight the display of the relevant information in some way.

There could even be a hierarchy of actions if the operators do not respond. In our current

architecture we have implemented such behaviour, though we did not drive it from the operator

state.

T h e resp onse is sim p ly to draw the op erator‘s attention to the suspected condition.

Normal System State – Erratic responses
Symptom: A succession of alarms and acknowledgements are outstanding, but some have been

acknowledged on time.

State: This may imply a little more that inattentiveness. The operators may be attending to other

ancillary jobs (recording information, shift switch over etc.). It might also be the result of

inexperience. This requires more than accentuated adaptation. The attention of the operators

needs to be achieved in a more focussed manner.

 142

Adaptation: We call this Focussed Accentuation Adaptation. Not only should the alarms be

highlighted, but also additional structure information may be needed (focus the process diagram

on the affected area, or group the alarms together).

Normal System State – Confused Responses
Symptom: The operator pattern of activity cannot be related to likely goals. Wrong alarms are

being acknowledged. Unnecessary actions are being carried out. Operator activity is not matching

system activity.

State: Inexperience could be a major factor here. The operators are misunderstanding normal

activity as abnormal activity. The only danger is that erratic responses might cause instability in

the system.

Adaptation: We call this Reassurance Adaptation. Firstly the operators must be assured that all is

normal. The priority of alarms could be restated and put in perspective. Then a higher level

(higher abstraction level) presentation should be presented

Disturbed System State (High Information rate) – Delayed Responses
Symptom: The system is providing information at a higher rate than normal. There are many

alarms and they are usually acknowledged but the delay to acknowledgement is getting longer.

The operators are just not able to handle the quantity of information being presented.

State: High information rate in the process model. Delays for acknowledgement getting longer

and longer. However the correct actions are being carried out.

Adaptation: We call this Filtering Adaptation. The need is to remove any extraneous information

so that the operators can concentrate upon the issues being presented. We require simpler, more

focussed displays, summaries of alarms (ordered by area).

 143

Disturbed System State (High Information rate) – Erratic Responses
Symptom: The system is providing information at a higher rate than normal. There are many

alarms and some are acknowledged incorrectly or not at all. The delay to some

acknowledgements is getting longer but oth ers are ackno w ledged prom p tly. T he op erato r‘s

judgment is now being affected by the quantity of information being presented

State: High information rate in the process model. Delays for acknowledgement getting longer

and erratic. Some correct actions are being carried out in limited areas.

Adaptation: We call this Focussed Filtering Adaptation. There is an urgent need is to remove

extraneous information so that the operators can concentrate upon the issues being presented.

Furthermore information should be reorganised to facilitate understanding. We require simpler,

more focussed displays, summaries of alarms (ordered by area). Overview diagrams may be

needed and accelerated time repeats of how the situation developed could be presented.

Disturbed System State (High Information rate) – Confused Responses
Symptom: The system is providing information at a higher rate than normal. There are many

alarms and few are acknowledged correctly or not at all. The delay to some acknowledgements is

serious. Many in appro priate action s are occurrin g (often rep eated). T he operato r‘s judgem ent is

seriously affected by the quantity of information being presented. The system is beginning to take

evasive action on its own.

State: This is a serious state. High information rate in the process model. Delays for

acknowledgements are getting longer and more erratic. The system will begin taking automatic

safety actions. The operators need outside help from Engineers or supervisors.

Adaptation: We call this Confusion Adaptation. The operators need to be focussed on remedial

actions not on performance goals. The information must be simplified to present only the

necessary actions to stabilise the system. Explanations of what remedial action the system is

 144

taking is needed and projections as to what will happen next if nothing is done (time to further

remedial actions). Calls should be made to get additional help.

Disturbed System State (Low Information rate) – Delayed Responses
Symptom: Alarm states are reducing, but this may be because the system is now automatically

responding by shutting down functions. The system is highly disturbed. It is now becoming

disabled

State: Highly disturbed. Partially disabled.

Adaptation: We call this Inaction Adaptation. The operators are sometimes puzzled as to what to

do and are spending long periods trying to work out what is wrong. Their thinking is not

completely at variance with the System State, but they are slowly losing the battle. Information

needs to be repeated in a focussed manner. Higher level views may be necessary. A change in

representation might actually be helpful (say a Mass or Energy flow diagram). The operators need

ton get a grip on the situation from a higher level

Disturbed System State (Low Information rate) – Erratic Responses
Symptom: Highly disturbed system state. Partially disabled. Operator actions sometimes correct

sometimes wrong.

State: Highly disturbed. Lack of understanding at times of what is going on.

Adaptation: We call this Comprehension Adaptation. The operators are losing control. High level

views are required to regain control at a high level. Then the information can gradually be

brought to lower levels. Time replays may be useful here. The trick is to get back to basics. What

is really basically wrong? Other representations may assist you, including media changes.

 145

The rest of this chapter therefore deals with the question of HOW to adapt the interface given

that a triggering has taken place. One set of issues concern the ways in which media may be

manipulated. Another related issue concerns how to adapt when there are a number of choices

available. A third set of issues will concern consistency. If adaptations are taking place over time,

how can the system ensure that a consistent viewpoint is presented to the operators. Alty et al

(Alty et al, 1992) have shown that there are no absolute rules about media usage. The

appropriateness of a medium will depend on the state of the process, the task, and the operator.

SO, as well as having access to the operator state and system state, the system will need to have

access to a knowledge source which advises it on Human Factors issues – this is called the

HUMAN FACTORS DATABASE.

The Development of a Human Factors Database
This section examines what rules and heuristics might be incorporated in the Human Factors

Database to enable it to determine the most appropriate type of representation (and its associate

parameters) for a particular context. It describes the general characteristics that the system

should exhibit and develops a potentially useful set of rules that will govern the selection of

representations. It is expected that the set of rules developed for the Human Factors Database,

will be customisable at design time to match the nature of the particular process the adaptive

system is being employed with.

User Interface Design Guidelines
Within the literature there are several examples of user interface design guidelines that provide a

grounding for a set of potential rules for the Human Factors Database. (Smith & Mosier 1984)

offer a set of general guidelines. For example, three of their guidelines are:

 At any steps in a transaction, ensure that whatever data a user needs will be available

from the display

 146

 Use short simple sentences

 For size coding a large symbol should be 1.5 times size of next smallest

These are useful but inevitably quite general. For example, the first principle is pertinent but

simply moves the problem to defining what is needed. More detailed guidelines have been

suggested by Nielsen (Nielsen 1992). The ideal is to present exactly the information the user

required –and no more- at exactly the moment it is needed. Principles of graphic design and an

adaptive interface can also help operators prioritise their attention to a screen by making the most

important elements stand out.

 M in im ise U sers M em o ry L o ad: ―D isp layin g to m an y ob jects an d attrib utes w ill result in a

loss of salience for the ones of interest to the user, so care should be taken to match

object visibility as much as possible with the users need.

 B e con sistent: ―T h e sam e in form ation sho uld be p resented on the screen in the sam e

lo cation on all screens an d dialo gues‖.

It can be argued that the latter point has less importance than the other two heuristics, since an

adaptive interface can never be truly consistent otherwise it would static rather than dynamic.

Although useful these guidelines are not always applicable in a process control context.

The remainder of this chapter will summarise specifics of how each media might best be used,

and what rules could be implemented to make the Human Factors Rules Database as effective as

possible. The rules were generated from several sources including (Faraday 1998, Pedersen 1999,

Smith & Mosier 1984, AHCI 1998)

A n um ber o f ―ad -ho c‖ rules have been gathered together that provide mechanisms for dealing

with different types of media in different circumstances. The information types are divided into

three groups – Descriptive, Operational and Organisational (Faraday 1998).

 147

The following set of guidelines can be codified as a set of rules within the Human Factors

Database, and customised at design time to match the nature of the particular process the

adaptive system is being employed with.

Determining What General Form of Medium Is Appropriate for A

Particular Context
It is necessary to determine what type of information the Human Factors Database is dealing

with, because information types can be used to map different types of media dependant on the

nature of the information. Task characteristics influence the modality of the media resource

used, for instance, verbal media are more appropriate to language based and logical reasoning

tasks: whereas visual media are suitable for physical actions involving moving, positioning and

orienting objects (Faraday 1998). I

In Figure 23 (Faraday 1998) see an overview of how different information types are related.

Each information selection rule (SR) links the required information type with appropriate media.

Figure 23 Overview of Information Types and Related Selection Rules (SR)

Information
Types

Descriptive Operational Organisational

Physical
SR1

Compositional
SR3

Spatial
SR3

Qualifying
SR4

Physical
Action

SR5

Role
SR6

Causal
SR7

Procedural
SR8

 148

Descriptive:
Physical SR1: If the task sub-goal requires physical information then prefer a visual medium.

Language is poor at describing object detail and appearance (Bieger & Glock 1984)

Caveat: If an object has to be identified which may be difficult for the user to recognise, use

language-text to indicate identity (Jorg & Hormann 1978).

Composition Sr2: If the task sub-goal requires composition information then use a visual medium

(Bieger & Glock 1984)

C aveat: L an guage can b e used to set the gran ularity o f the com pon ents in the im age e.g. ―L oo k as

sub assem b ly X ‖

Spatial SR3: if the task sub goal requires spatial information then prefer a visual medium (Bieger

& Glock 1984)

Caveat: Language- text captions can be used to identify landmarks and components for spatial

information

Qualifying SR4: If the task sub-goal requires qualifying information then use linguistic media

(Boohrer 1975)

Operational
Physical action SR5: If the task sub-goal requires physical action information then prefer a visual

medium animation for complex actions e.g. those with complex paths or manipulations (Sweezy

1991) use still image for simple actions (Sweezy 1991)

Caveat: Language should be used to identify and amplify explanation of complex actions, or

groups of action; or to qualify actions (Boohrer 1975)

 149

Role SR6: if the task sub-goal requires role information to identify agents or objects involved in

the action, then use a linguistic medium to add this information to the image or animation

sequence.

Organisational:
Causal SR7: If the task sub-goal requires procedural information then prefer a linguistic medium

to provide sequencing relations, particularly when the time frame is not constant (Burch 1973);

animation or image sequences will be useful to support any underlying physical action

information.

Procedural SR8: If the task sub-goal requires causal information prefer a linguistic medium to

provide key causal relations (Mayer & Anderson 1991), with animation or images sequences to

support any underlying actions being related.

The Visual Medium
Still Visual Image
Still Visual Image – Physical Information

 If an unusual or complex image is to be displayed show the whole object unobscured.

 If the task requires a specific object to be identified, or requires details of object

properties, then use colour and texture in images to identify the object.

Still Visual Image – Compositional Information

 Information is gleaned initially from an overview of the image, so the adaptive system

needs to apply little descriptive detail to major objects. It should apply attentional effects

(e.g. highlight) if the object is important.

 By default objects focused on will be those which are: bright in colour, set apart from

other objects, larger in size, shown in more detail, in sharp focus or nearer the front of

the scene. These should be the important objects.

 150

Still Visual Image – Spatial Information

 If a particular object needs to be located accurately, then the Human Factors database

should se it as a landmark. Landmarks should be perceptually salient objects with which

the user is already familiar.

 If several objects are to be located as landmarks, he Human Factors Rules Database

should divide the image into sub areas, and select a landmark for each area.

Still Visual Image – Attentional Guidelines

 To draw attention to a group of spatially distributed objects the Human Factors Rules

Database should set a common visual attribute e.g. change to the same colour. To

emphasise a group of co-located objects it should highlight the background or draw a

box around the objects.

 The Human Factors Rules Database can place icons by or on an object to draw attention

to the object, this function can be used if highlighting may obscure details.

 The Human Factors Rules Database can utilise labels linked to objects as a means of

drawing attention and providing supplementary information. This method is particularly

effective when labels are dynamically revealed to direct the users reading sequence.

 The Human Factors Rules Database should avoid showing an object in motion or using a

highlighting a technique when the user is extracting information from an image. It

should allow at least a second before changing the image.

 The Human Factors Rules Database should limit the use of too many highlighting

techniques within an image at once; instead it can sequence highlights to move attention

from one object to another.

Linguistic Media – Use Of Text
Linguistic Media – Procedure Information

 The Human Factors Rules Database can use text for the purpose of displaying procedure

sequencin g in form atio n. It sho uld utilise cue ph rases fo r m axim um effect. A cue (e.g. ―at

 151

tim e x‖) sho uld be used to lo cate a p articular im portant time point in the task, such as the

start or end of a sequence

 The Human Factors Rules Database should structure text to indicate procedures order by

formatting the text into lists or frames

Linguistic Media – Causal Information

 The Human Factors Rules Database should use cue words to indicate causal

relation sh ip s: ―b ecause, in o rder to , resultin g in ‖

Linguistic Media – Attentional Guideline

The Human Factors Rules Database should:

 Display text before the image or make the text area larger, if it deems that the focus

should be on the text prior to the image. Generally an image will be focused on before

text.

 Always set text a display time of at least 6 seconds. This allows the operator sufficient

time to read the text. Simple words require 200 msecs each.

 Use highlighting, bold or large fonts to make a particular word or clause of text stand out.

 Use paragraphs and titles as entry points to direct attention to the required part of a text.

C hoice of Static “v” D yn am ic M edia
The Human Factors Rules Database should:

 Use text or still images for important information that must be attended to, as

information may be lost from time varying media. Memory for the content of dynamic

media is generally worse than for static medium.

 Be aware that animation media will dominate over static image media, as attention is

drawn by default to motion or stimuli that change.

 152

 Favour text if the content to be presented is complex or lengthy, if the content is simple

or short then it should favour speech

Re-Enforcement.
If the Human Factors Rules Database deems that re-enforcement of a representation is necessary

(perhaps the initial representation has not been acknowledged within a pre-defined time limit),

then it should:

 Present the same event in two (or more) modalities e.g. an animated demonstration of a

procedure is accompanied by a voice description

 Repeat the same content (if no further content is available) again but acknowledge that

this is a less effective method than providing content with more information.

Colour Coding Applications

The above sections detail how the Human Factors Rules Database might decide upon the type of

visual medium selected, it also must decide upon the parameters of the representation selected.

An important parameter for visual representations is colour. Colour coding is most effective

when used with some other display feature, such as symbology or actual text content, or with

another coding method such as size. Therefore when selecting the parameters of a

representation the Human Factors Rules Database should utilise one of the other main

parameters as the primary code and colour as the secondary code.

The Human Factors Database should be loaded with a standardised colour palate and apply it

consistently across all process applications to ensure that the operator can make the proper

interpretations. Colour coding should also be consistent with the relationship of the label colour

and the colour associations of the words in the label. The Human Factors Rules Database

should use colour to:

 153

 Attach specific meaning to process information presented in the form of text or

symbology. (for instance the use of industry standard colours for alarm priority (red, for

instance, implying highest priority)).

 D irect th e op erator‘s attention to the most important or time-critical information on the

screen.

 Enable an operator to rapidly differentiate among several types of information, especially

when the information is dispersed on the display or contains complex computer-

generated symbology.

 Increase the amount of information portrayed on a graphic display by adding colour in

addition to shape.

 Indicate changes in the status of graphical data.

It is important that the Human Factors Rules Database use colour coding conservatively, so that

only a few colours are used to designate critical categories of displayed data and only where it will

help operator performance. When overused, colour may impede rather than enhance

performance.

Presentation and Formatting of Auditory Information
The effectiveness of any auditory display is dependent upon the environment within which the

display must operate. A spoken message may be easily obscured by other spoken messages; a

particular tonal signal may be masked by or confused with other similar tonal signals; and any

auditory signal or message may be masked by frequent, loud bursts of noise, such as would occur

during an emergency. In general, periodic tones and non-periodic complex sounds are easily

generated and are appropriate for various types of information display. Periodic tones are good

for automatic communication of limited information, however, the meaning must be learned.

 154

Complex sounds are useful when the sounds are easily identified and have an inherent common

meaning to the user (e.g., fire alarm signals).

Voice warnings and messages are more flexible than simple sounds, because they can provide

more information while alerting the operator to a problem. This may be especially important

during high workload, when the meaning of a signal may be forgotten. Voice messages are most

effective for the rapid communication of complex, multidimensional information. Because the

meaning of speech is intrinsic in signal and context when standardised, there is a minimum of

learning required of the user. Voice technology has been shown to offer some advantages in

specific situations to both visual and other auditory methods of presenting information. These

include: the display of alarm identification and location information; the display of process state

and the display of warnings.

Selection Criteria
The following guidelines indicate how to select the type of auditory display that is most

appropriate to a particular process application.

Usage

The Human Factors Rules Database should use auditory renderings when:

 The information to be processed is short, simple, and transitory, requiring an immediate

or time-based response.

 The visual display is restricted by over-burdening, ambient light variability, environmental

considerations, or anticipated operator inattention.

 The criticality of transmission response makes supplementary or redundant transmission

desirable.

 It is desirable to warn, alert, or cue the operator to subsequent additional response;

 Custom or usage has created anticipation of an audio display

 155

 Voice communication is necessary or desirable.

Criteria for Auditory Tonal Presentation
Auditory tones should be used by the Human Factors Rules Database when:

 The message is extremely simple;

 The operator has special training in the meaning of coded signals;

 A signal designates a point in time that has no absolute value such as a specific point in a

sequence of events;

 The message calls for immediate action;

 Voice signals are overburdening the operator;

 Conditions are unfavourable for receiving voice messages (tonal signals can be heard in

noise that makes speech unintelligible);

 Voice communication channels are overloaded.

Criteria for Voice/Speech Presentation
Voice messages should be used by the Human Factors Rules Database when:

 Communication flexibility is necessary;

 The identification of message source is necessary;

 A simple coded signal cannot adequately give direction or instructions to the operator;

 When the operator does not have special training in coded signals;

 The message deals with a future time requiring some precision

 Potentially stressful situations are occurring (alarm flood) that might cause the operator

to ―forget‖ th e m ean in g o f th e auditory co de

 Ambient masking noise characteristics prevent the use of simple tonal signals

 156

 Other complex tonal signal possibilities have already been exhausted (i.e., have been

assigned and cannot be duplicated).

Table 2 presents the advantages and disadvantages for different types of audio signals based on

the function to be performed.

FUNCTION TYPE OF SIGNAL
 Tones (Periodic) Complex Sounds

(Non-Periodic)
Speech

 Poor Poor Good

Quantitative Indication

Maximum of 5 to 6 tones
recognizable when ideally
spaced and sounded alone.

Interpolation between
signals inaccurate.

Minimum time and error
in obtaining exact value is
compatible with response.

 Poor to Fair Poor Good

Qualitative Indication

Difficult to judge
approximate value and
valuation of deviation
from null setting unless
presented in close
temporal sequence.

Difficult to judge
approximate deviation
from desired value.

Information concerning
the process presented in
form compatible with
response.

 Good Good Poor

Status Indication

Start and stop timing.
Continuous information
where rate of change of
input is low.

Especially suitable for
irregularly occurring
signals.

Inefficient; more easily
masked; problem of
repeatability.

General

Good for automatic
communication of limited
information. Meaning
must be learned. Easily
generated.

Some sounds available
with common meaning,
e.g., “alarm ”. E asily
generated.

Most effective for rapid
(but not automatic)
communication of
complex, multi-
dimensional information.
Meaning intrinsic in signal
and context when
standardized. Minimum of
new learning required.

Table 2 Functional Evaluation of Audio Signals

 157

Speech & Sound Attentional Guidelines
The above sections detail when the Human Factors Rules Database should use the auditory

medium, and what form of auditory representation is most appropriate for a certain context.

This section shows under what circumstances the Human Factors Rules Database should alter

the parameters of a representation, and how it should alter the representation. The Human

Factors Rules Database should:

 Use speech and sound to alert users to important information. Sound will focus attention

initially over visual information, but attention may shift to visual media after a short time.

 Only use a single strand of speech or sound at any one time multiple strands of speech or

sound will interfere with each other and distract focus. Speech will usually gain focus

over sound.

 Emphasise information in speech using loudness or rate; the louder or more slowly

spoken words will be more salient.

Media Combination & Ordering
Combining media can be a very effective tool, however incorrectly used it can lead to confusion

for th e operator. It is th erefo re im po rtant th at ―C on tact P o ints‖ are p laced b etw een the

associated media. Contacts Points are places in the presentation where the verbal part of the

presentation needs to be related with the visuals. The problems contact points bring are:

 How to provide linking references between language and visuals. A contact point

references can either be direct in which the language explicitly references the visuals e.g.,

‗loo k at X ‘; or in direct in w h ich the w ho le visual is referen ced e.g. ―see figure b elo w ‖

 How to ensure the message thread can be followed between visual and verbal media.

The rules below attempt to answer these problems, the Human Factors Rules Database should

try to:

 158

 Use a direct contact point if the connection between information is an image and

language is important e.g. direct the users attention to the object in the image by

highlightin g the o b ject w h ich is b ein g spo ken abo ut ―loo k at alarm 5‖.

 Use indirect contact points if the connection between information in an image and

language is less important – therefore direct attention to the media resource.

 Ensure that the two types of media are available when the contact point is made, and are

in focus. The Human Factors Rules Database should reveal text and image elements

together if they share a contact point. Use highlighting techniques in visual media where

the contact point is auditory cues for speech.

 Present language before visual media when the two are combined so that the language

―sets th e scene‖ an d direct the user‘s attention to in form ation w ith in th e im age.

 Allow time for contact points to be formed e.g. pace the presentation to allow inspection

of image, or speech

 Use speech if animation is to be combined with language, as reading text will compete

with viewing animation.

Consistency Measures

Consistency Across Functions
Where possible, the Human Factors Rules Database should set representations for different

functions to be as consistent and predictable in terms of the current format schemes,

organizational schemes, control responses, interface dialogs, and feedback as possible.

Abbreviations, acronyms, and symbol meanings should be consistent throughout the process

interface system.

 159

Format Consistency
Display formats should have a consistent structure and layout that support similar functions

throughout the operator interface. Common elements within a given format type (e.g.,

alphanumeric formats, menu formats) or between similar formats should be, wherever possible,

consistently depicted and located.

Dialog Consistency
Control procedure representations and dialog behaviour schemes should be consistent in form,

means, and consequences from one transaction to another, from one task to another, and from

one application to another, to support the operator in transitioning between tasks as well as

multi-tasking.

Feedback Consistency
The process interface should have a reliable and consistent method of system response across

process applications. Process interface transactions made by the operator should produce a

consistent perceptual response whether it is in visual, tactile, or auditory form.

Conclusion
There are two main forms of possible adaptation, short or long term. Long term adaptation

implies complete change of state of the adaptation system to match the disturbance. Clearly in a

process control environment this is impossible. Therefore the form of adaptation required for

this thesis is short term compensating adaptation.

To fully understand the nature of adaptation required for a complex process control

environment, it is necessary to define triggers and actions. These triggers and actions can be

defined in a matrix where, the two main triggers in process control (process and operator) run

along the axis.

 160

There are a large number of guidelines that can be used to guide the selection process in the

adaptive system. Clearly implementing a Human Factors database taking into account all the

above factors is well beyond the scope of this thesis. However, a limited implementation was

attempted to be used as a guide for the adaptive system. The Human Factors database developed

was fairly primitive, and was tailored to act specifically to the scenarios developed for the

prototype. However, it could easily be scaled up and populated with a full range of heuristics.

 161

C h a p t e r 7

AGENT SOFTWARE DEVELOPMENT ISSUES: THE WAY
FORWARD

Introduction
This chapter contains a review of appropriate software technologies and toolkits to be used for

constructing and optimising agents. It begins by assessing which software language is the most

suitable for writing applications within the multi-agent domain. Then it examines the arguments

for and against the selected language, and looks at the various methods and application

environments that will help solve the deficiencies of the chosen language. It then goes on to

describe the best runtime environment within which it should run. The chapter examines the

constraints imposed on the selection of the runtime environment when dealing with many

threads.

An examination was then made of various Integrated Development Environments (IDEs) and a

description was formed of which packages are most appropriate when dealing with agent

technologies.

There then follows descriptions if various available agent construction and development tools.

These are assessed on a set of criteria that suit the needs of the process control described in

Chapter 3.

 162

Choice of Software language
Introduction
This section first examines two prime candidate languages that can be used for developing agent

applications, Java and C++. It begins by examining the recommended candidate – Java – and

defines the intrinsic features that make it the language of choice for developing agent

applications. Then it compares Java with C++ to highlight this selection. It then assesses

technologies that can be used to improve Java run-time performance. Finally, it examines the

various Java enabled, Integrated Development Environments and toolkits available.

Why Java?
What are the main features that make Java a suitable language for agent development?

Platform Independent: Agents, by nature, are inherently distributed. Thus an agent application

should, in theory, be able to execute anywhere on the network on any Java compliant

hardware/software platform. Java provides the developer with a language that is architecturally

neutral and platform independent. Therefore Java provides an ideal solution to agent

distribution, and allows the system to be rapidly updated as changes to platforms are introduced.

Object-Oriented: Although Agents are more than objects, a language that provides a rigorous

object-oriented set-up is highly desirable. Whilst other languages are based on the object-oriented

paradigm, Java is one of the few that enforce these principles.

Multi-Threaded: Agents are, by common consent, autonomous creatures and thus should run

within individual threads. Unfortunately, in many other languages, support for multi-threading is

limited and makes programming of this type very difficult. Java provides built-in support for

threads and provides a way to obtain fast, lightweight concurrency within a single process space.

In addition, Java provides a very powerful system called RMI (Remote Method Invocation) that

allows an object running in one Java virtual machine (VM) to invoke methods on an object

running in a different Java VM

 163

Network Supportive: Java h as a w ell suppo rted and easily exten sib le set of A P I‘s (A pp lication

Programmer Interfaces) that deal easily with both UDP and TCP/IP, and thus allow both uni-

cast and multi-cast calls across a network

Further Features: Java provides database connectivity through SQL interfaces and has native

language support(C++) for legacy systems. In addition it has an IDL API, which allows Java to

be incorporated with CORBA if necessary.

Problems With Java.
Much of the argument against Java has been directed at its runtime performance. This problem

derives from the fact that Java is a platform independent language and is therefore, by nature, an

interpreted language. As a consequence, Java operates not by running directly on a native

machine, but by operating on a Virtual Machine (VM). This Virtual Machine receives instructions

from the Java compiled classes in the form of bytecodes, which the Virtual Machine interprets into

native system calls. This process, in early Java applications, slowed down its performance and

scalability as well as increasing the load on system resources. However, this complaint has to be

weighed heavily against the advantages listed above many of which are not possible to achieve

with the native code generated by C/C++ and Pascal compilers.

 Other examples of Java advantages are:

 Platform Independence: Not possible with C++.

 Object-Oriented: C++ is not rigorously object-oriented (unlike Smalltalk for instance),

rather it had a tacked on pseudo object-oriented nature.

 Multi-Threading: This facility is extremely difficult to implement well in C++.

 Ease of Use: Java is an easy to learn, user-friendly and powerful language.

 164

 Network Supportive: Once again in C++, accessing objects that are not directly in the

lo cal address sp ace is a difficult pro cedure. O n e o f Java‘s key features from its in cep tion

is the ability to be used in a Client-Server fashion, and accordingly is imbued with

po w erful com m un ication A P I‘s.

In an attempt to alleviate the inherent performance problems associated with processor-

independent Java executables, various companies offer just-in-time (JIT) Java compilers that

compile Java bytecode executables into native programs just before execution. This considerably

speeds up performance and allows Java to approach the executing speeds reached by C++.

Performance Assessment: Java vs. C++.
How does the performance of Java applications compare with similar fully optimised C++

programs in theory, in benchmarks, and in real-world applications? The benchmarks listed below

were taken from (URL1)

Program Speed
Many of the performance problems associated with Java are due to the way in which it is

compiled. Java executables contain collections of platform-independent bytecodes, which cannot

be run on a target platform without translation into binary instructions suitable for each target

p latform ‘s C P U . T he V irtual M ach in e is responsible for performing this translation. There are

two possible methods a Virtual Machine uses to do so: a bytecode interpreter or a just-in-time (JIT)

compiler.

Bytecode interpreters perform many times slower than comparable C++ programs because each

bytecode instruction must be interpreted every time it is executed, which can lead to a great deal

of unnecessary overhead. A JIT compiler however passes over the entire class file and then stores

it rather than executing it line by line. This eliminates the need for repeated translations of each

bytecode instruction.

 165

In Table 3 the benchmark test comprises:

Integer and Floating-point division tests a loop 10 million times calling a member method, which

contains an Integer or Floating-point division.

Dead code tests a loop10 million times and performs an operation that is never used.

Dead code with Integer division tests a loop 10 million times and performs an operation that is never

used and one that is.

Static method tests a loop10 million times calling a static method, which contains an Integer

division.

Member method tests a loop 10 million times calling a member method, which contains an Integer

division.

Test T im e (sec’s)
C++

T im e(sec’s)
Java (JIT)

T im e (sec’s) Java
(Bytecode interpreter)

Integer division 1.8 1.8 4.8
Dead code 3.7 3.7 9.5

Dead code with Integer
division

5.4 5.7 20

Floating-point division 1.6 1.6 8.7
Static method 1.8 1.8 6.0

Member method 1.8 1.8 10

Table 3 Java Vs. C++ Performance Figures

 166

Table 3 gives a flavour (admittedly not a comprehensive one) of the type of performance

expected of Java and C++ at compile time. Without a JIT, Java performs three or four times

worse than C++. However, it is clear that w ith a JIT , in m o st cases, Java m atch‘s C + + .

Code Optimisers
C++ compilers are able to improve the performance of a piece of code by detecting and

improving inefficiencies through a process called code optimisation. The calculation of most

optimisations requires knowledge about a group of instructions and may require multiple passes

over these instructions. Thus the compiler may well on the first pass gather information on the

structure of programmatic loops and note down any variables used. On the second pass it may

attempt to streamline these loops and eliminate any unnecessary overhead.

A Virtual Machine without a JIT works on the fly, and thus only sees each instruction as it is

executed, and so is unable to perform this type of optimisation. A JIT can, however, perform

code optimisation on the entire class file. As a result, the only significant performance difference

between a Java program run with a JIT and a native C++ application will be the amount of time

it takes to perform the initial translation of the class file and the types of optimisation that are

performed.

This overhead will only be a significant proportion of the total execution time if a program is

composed of a large number of Java classes that are not used a significant number of times by a

program. Real-world programs use the same classes many times, so the proportion of the amount

of time spent translating the class will be very low compared to the time spent actually running

the code within the class.

Program Size

Windows NT executables that are written in C++ are significantly larger than similar Java

executables. There are two main factors that account for this size difference.

 167

First, the binary executable format for C++ programs can inflate code by as much as a factor of

two over Java code.

The Java virtual machine provides a set of packages that perform various functions such as

network services and collection classes. Programs want to access these types of functions (that

usually exist outside of the core C++ API) in C++ the programmer must deliver the

implementation within the program. This typically doubles or triples the code size.

These factors can be seen in Table 4 below where the size difference can be accounted for by the

extra libraries that are required for the C++ program to perform the equivalent operation.

Program Name Program Size: C++ vs. Java
Simple Loop 46K vs. 3.9K

Memory Allocation 34K vs. 1.4K
Table 4: Java Vs. C++ Program Size

Memory Allocation.
C++ and Java allocate memory in much the same manner. However, C++ programs must

explicitly release memory back to the system. One major cause of bugs in C++ programs is that

programmers forget to explicitly release memory back to the system. T h is m em ory is ―leaked‖

and will not be available until the program terminates.

In Java environments, the in-built garbage collector detects when a program no longer needs a piece

of memory, and consequently releases it. Since the garbage collector in Java has to be able to

determine which pieces of memory are no longer in use, the overhead of memory management

for simple tasks is much greater in Java than C++. However, there are two advantages to the Java

garbage-collection model that C++ lacks. First, programs are virtually immune to memory leaks.

Since memory leaks are a frequently occurring bug in large-scale systems, this greatly reduces

 168

development time, since the programmer does not have to spend lengthy debugging sessions

finding and rectifying such leaks.

Second, memory fragmentation can be a major problem in large-scale systems. Memory

fragmentation occurs when large numbers of memory allocations are made and released and can

seriously hinder the long-term performance of an application. A well-written Java garbage

collector can move allocated memory around and prevent fragmentation.

So, although there is an acknowledged trade-off between Java and C++ regarding memory

allocation, the trade-off results in great benefits for Java at the price of the performance lost.

For example:

Allocating and freeing 10 million 32-bit integers took 0.812 seconds in C++.

Allocating and freeing 10 million 32-bit integers took 1.592 seconds in Java.

Conclusions.
This section has shows the relative advantages and disadvantages of Java, and explained methods

for minimising the disadvantages. The next section gives a closer examination of the strategies

used to increase Java performance is examined.

Just-In-Time and Native Compilers
Introduction
In this section an examination is made of some of the technologies available to improve Java

runtime performance. The technology to do this is can be split into two groups, Native or Static

compilers and Just-In-Time compilers.

 169

First an examination is made of what each technology actually does and a brief outline is given of

how it works. Next, this chapter looks at and describes existing products on the market for each

technology as described. Finally a conclusion is reached, and a verdict is given on the reviewed

technologies.

Just-In-Time Compilers.
What is a Just-In-Time Compiler

The Java Virtual Machine (VM) is a software abstraction for a generic hardware platform and is

the primary component of the Java system responsible for portability. The purpose of the VM is

to allow Java programs to compile to a uniform executable Figure 24) execute within the VM

itself, and the VM is responsible for managing all the details of actually carrying out platform-

specific functions.

It is through the VM that executable Java bytecode classes are executed and ultimately routed to

appropriate native system calls (see . A Java program executing within the VM is executed a

bytecode at a time. With each bytecode instruction, one or more underlying native system calls

may be made by the VM to achieve the desired result. In this way, the VM is completely

responsible for handling the routing of generic Java bytecodes to appropriate native calls on the

underlying platform. Knowing this, it is clear that the VM itself is highly platform dependent.

Figure 24: The Operation of the Java Virtual Machine

 170

JIT compilers alter the role of the VM by directly compiling Java bytecode into native platform

code, thereby relieving the VM of its need to manually call underlying native system services. By

compiling bytecodes into native code, execution speed can be greatly improved because the

native code can be executed directly on the underlying platform (see Figure 25).

Figure 25: The Operation of the Just In Time Compiler

Notice that instead of the VM calling the underlying native operating system, it calls the JIT

compiler. The JIT compiler in turn generates native code that can be passed on to the native

operating system for execution.

Just-In-Time Compilers: The Reality

In theory there should be only a negligible difference between JIT-compiled Java bytecode and

native C++. In practice, there are two factors that cause performance differences.

First, there will usually be several valid translations of platform-specific instructions when a

bytecode instruction is translated into one or more platform-specific instructions. Each of these

valid translations will produce the same result, but may have vastly different performance

 171

characteristics. If the programmers that create the JIT and C++ compiler are of the same calibre,

the performance of both solutions should be similar.

Second, there is a significant trade-off between compilation time and the number or level of

optimisations that are performed on a piece of code.

The common optimisations that compilers perform may be divided into groups based on

performance gains and computational expense:

Primary and secondary optimisations typically afford a program 10 to 15 percent performance gains

with minimal computational overhead.

Tertiary optimisations can add an additional 5 percent performance gain, but at much greater

expense.

However, the current crops of JIT compilers are part of a rapidly maturing technology, and the

balance between degree of optimisation and performance seems to have been well defined.

What is a Native/Static Compiler?
Java Native or Static compilers operate in a similar way to conventional C++ compilers. They

operate upon the Java source bytecodes, and translate them into native platform dependant code.

U n like dyn am ic JIT com p ilers th is h appen s ―off-lin e‖ an d o utside of th e Java V M . T he

compilation only happens once and produces system dependent executables. The generation of a

native code program eliminates the performance and footprint overhead of a virtual machine.

The work necessary to translate bytecodes into an executable form is only performed once,

before the program is delivered to its users. Because the translation from bytecodes to native

code need not be accomplished in real time, computationally intensive, but very effective,

optimisation techniques can be used to improve the quality and performance of the generated

 172

code. Whereas, JIT compilers can only perform a minimal set of optimisations due to runtime

constraints.

Contrary to popular perception, deploying Java applications as native executables does not

necessarily preclude the b enefits o f the ―w rite-once-run-anyw h ere‖ paradigm . M o st n ative

compilers preserve the original Java class files, which can always be moved to a new platform at

any given point. Needless to say, it is absolutely imperative to select a native compiler that not

only supports the complete Java specification, but also does not require the developer to make

any changes to the Java source code.

A Review Of Just In Time and Native Compilers
In this section an overview of current technology is presented and an assessment of their

usefulness is made. Various assessment criteria were used:

 Runtime Speed.

 Ability to run on various platforms.

 Dynamic Class loading ability.

 Reputation and reliability.

Just-In-Time Compilers.
Symantec Corp. Just-In-Time Compiler.

The Symantec JIT (URL2) is widely regarded as the best on the market. In most current

benchmarking exercises the Symantec JITs has been found to offer the best all round

perform ance. It is so effective that Sun h as now b un dled it free w ith it‘s latest R un tim e

Environment and is included in the new JDK1.3. This decision by Sun has underlined the

importance of this VM.

 173

Conclusion

A fine stopgap solution when assessing initial performance in the prototyping stage as it is free

and readily available. Symantec has more expertise in JIT technology than any other vendor in

the Java market. Its technology has steadily improved and matured, and it offers a stable, well

tested and well used technology.

Su nSoft’s H O T SP O T C om p iler
T h e on ly real com p etitor, in perfo rm ance term s, to Sym antec‘s JIT is the H O T SP O T (U R L 3)

optimiser/JIT from Sun. It delivers Native Compiler performance with all the other advantages

of JIT technology. Fundamentally, HotSpot is an extension of JIT compiler technology, and uses

a technique called adaptive optimisation to generate the performance boost. The HotSpot VM

constantly monitors the performance of the executing bytecode on a per-method basis, and

strives to identify critical regions within the application. Once this is done, Java methods in the

critical region are ―in -lin ed‖ (statically in cluded directly w ith in th e code) and optimised for

maximum performance.

Because HotSpot learns from the execution of an application at runtime, its speed really picks up

after it h as been runn in g for a few m in utes. It also an alyses the app lication ‘s en vironm ent;

optimising for a multiple-processor system differently than it would for single processor systems.

Because it is more sensitive to the underlying machine, HotSpot could produce code that is more

optimised for a specific machine than a C++ program compiled specifically for an particular

Operating System.

HotSpot also features an advanced garbage collector and a revolutionary thread synchronisation

implementation that significantly improves the performance of multithreaded applications.

Conclusion

HotSpot almost matches anything produced by C++, it should be highly reliable as it operates

w ith in Sun‘s o w n V M . In addition , m an y of th e perform ance prob lem s enco untered w ith in

 174

agent projects are due to the multi-threading aspects inherent when creating agents, which

HotSpot addresses using its threading technology.

Native/Static Compilers.
IBM High Performance Compiler for Java

The HPJ Native compiler (URL4) is one of the best known and respected native compilers

availab le, an d is p ackaged as p art o f IB M ‘s V isual A ge‘s Java D eve lopment Environment. The

following benchmark test (Table 5)was taken from PC Week (URL5) for the following

applications written in Java.

Jobe: A Java obfuscator, by Eron Jokipii.

Toba: A Java to C translator, University of Arizona.

Javac: Sun ‘s Java 1.0.2 so urce to b yteco de co m p iler.

Table 5: Performance Figures for HPJ Compiler

Conclusion.

A ltho ugh it is fast, H P J h as sign ifican t lim itation s. IB M ‘s o n line w h ite p aper describes the b eta

version as ―a Java 1.0.2-level im p lem entation w ith som e m issin g features‖. U nfortun ately, these

missing features are critical to any agent project that interacts with a user as they include the

java.aw t(Java‘s graph ics A P I) and som e of Java‘s b asic facilities, such as text-mode output from

th e p rintln . A lso ab sent from the H P J beta version is one o f Java‘s vital features fo r software life

Benchmark Interpreted JIT Compiled Compiled (no check)
Javac 40.2s 21.1s 3.9s 3.7s
Toba 67.2s 51.7s 5.7s 5.5s
Jobe 18.1s 13.6s 4.6s 4.2s

 175

cycle cost reduction: dynamic classes. It does not appear that IBM has created any further

versions of HPJ, and the beta version is rather old now.

Tower J High Speed Native Compiler,
Tower Technologies is currently the leading player in the field of specialised native Java

compilers. Their TowerJ (URL6) Java compiler not only makes use of sophisticated global

optimisation, but also structural and flow analysis to deliver C++ execution speed to Java

applications. Additionally, TowerJ claims significantly to reduce the memory footprint of Java

applications.

TowerJ employs a unique hybrid architecture that potentially solves many of the problems

associated with native compilers. It allows users to choose at deployment time which portions of

a system are to be compiled directly to native shared libraries and which will remain as bytecode

until runtime. This architecture could potentially offer an agent developer excellent performance

whilst still maintaining flexibility.

The TowerJ compiler was an early entrant into the native compiler field, the compiler is not only

Windows compliant (most competitors are only windows compliant), but also can operate on

Solaris and many other platforms.

The new release of TowerJ also adds a partitioning option to T o w er‘s w ho le system optim ising

n ative com p iler allo w in g developers to create optim ised native D L L ‘s from Java b ytecode classes.

Thus TowerJ should allow for dynamic functions such as Remote Method Invocation (RMI).

In terms of performance it by far the best product on the market. In a recent benchmarking

exercise it set a new record among Java VM and deployment compiler vendors.

Conclusion.

It must be expected that in the near future other technologies will emerge that might match

T o w erJ‘s perform ance, however at this time, this is the best on the market.

 176

JOVE
JO V E (U R L 7) is a ―w h o le-p ro gram ‖ optim isin g com p iler offered b y Instantiations Corp. It builds a

model of an entire Java program including any standard or third party class libraries that are used

by the program. JOVE uses this model to analyse the structure of the entire program before

performing optimisations or code generations.

Jove is unique in that it not only performs standard optimisation techniques but also applies

specialised optimisations, w h ich w ork on Java‘s in heren t ob ject-oriented inefficiencies.

In addition , un like m o st stan dard n ative com p ilers Jo ve fully supp orts m an y o f Java‘s dyn am ic

features such as dynamic object creation, garbage collection, reflection, Beans and RMI.

Additionally, it includes a high-performance runtime environment, which packages applications

as single executable files.

 JOVE claims that:

 JOVE removes over 90% of the dynamic calls in a typical Java application

 In addition, it produces a 50-75% overall reduction in call sites

 JOVE aggressively seeks out and eliminates unused code and unnecessary generalisation

in programs

 JOVEs precise, multi-generational garbage collection system outperforms competitive

systems by a factor of up to 15 times. All while maintaining or reducing the runtime

footprint of the program

 In addition JO V E ‘s runtim e system in cludes:

 Low memory overhead objects.

 Precise, multi-generational, multi-threaded garbage collection

 177

 Low overhead polymorphism

 Native multi-threading or single threaded

 Fast method dispatch and type checks

 J/Direct native method support

Conclusion

Jove appears to be significant quicker than all current JIT and Native compilers, the only real

problem lies in the fact that it produces Native code.

Future Options: Jove vs. HotSpot.
These two technologies offer the agent developer the brightest hopes of best performance whilst

still m aintain in g Java‘s advantages.

Hotspot attempts to extend JIT (Just-In-Time compiler) technology to include aggressive

optimisations. The JIT approach is inherently limited by the requirement that it perform its

optimisations in real time as the program is executing.

JO V E , som etim es called an ―ahead of time compiler‖, does its optim isation s durin g the dep lo ym en t

phase of a project when developers are preparing the application for implementation on the

target system. Because of this, JOVE, unlike Hotspot is not time-constrained with respect to the

optimisations that it can use. Relatively time-expensive, but very effective techniques can, and are,

used to produce the highest performance possible.

 JO V E h as several m ajor advantages o ver Sun ‘s H o tspot techn o lo gy:

 It produces significantly higher performance programs

 Optimisations are not limited by real-time requirements

 JOVE produces significantly smaller runtime footprint for applications

 178

 It pro vides th e fam iliar ―executab le file‖ dep loym ent m o del

 JO V E w ill support both JN I and M icro so ft‘s J/D irect exten sion s

However these performance gains apply mostly to applications that are largely static in nature.

Whereas in programs with a degree of dynamism HotSpot is likely to offer a better approach. So

in the case of our system, it would appear Jove would offer the better performance gains.

JITCache Technology: Red Shift.
JITCache technology works by observing the code that goes through the compiler as it is

compiled (like any normal JIT). However once a method is compiled a copy is stored, so that the

next time that method is loaded the JITCache recalls it from the store without having to

recompile. If a class file changes, its methods do get recompiled and the old code in the database

is thrown away.

JITCache technology can be combined with native, ahead-of-time compilation to pre-load the

cache with methods that will be used in a deployed environment. The result: the speed of a

natively compiled application and the flexibility of a Just-in-Time compiler.

Redshift (URL8) make uses of JITCache technologies and is a hybrid approach with the

advantages of both JIT and native compilers. It is however intended for use with embedded

systems. Its approach to increasing performance is novel though, and is a promising avenue for

future tools.

Conclusion

It can be seen that, in theory at least, of the current crop of Java performance tools Redshift

should offer the best performance. However, at the time of writing the author was unable to

retrieve any performance figures from the makers, and is therefore unable to make any

judgement on its real performance. In addition there appears to be no testimonial evidence of

any real applications that use this technology.

 179

Conclusion on JITs and Natives
Performance issues pertaining to Java should not present a problem when developing a multi-

agent adaptive system, with each passing month performance barriers are being broken with

SunSoft alone having boosted its Virtual Machine tenfold in a matter of months.

It is clear that each technology has its relative advantages and disadvantages. JIT offers much

improved performance with fully dynamic performance, and o ffers developers all o f Java‘s

inh eren t advantages. H o w ever, JIT leaves large m em ory o verh ead an d it‘s perform ance in term s

of speed is a far below that of native compilers. JIT compilers (including HotSpot) are expected

to continue their dominance at the client, but it seems that in all likelihood, native compilers are

here to stay. Companies will find it impossible to ignore the prospect of running their natively

compiled Java applications many times faster than by using JITs alone. Thus a split can be seen

in technologies where JITs are employed at the Client end, and Native compilers are in use on

the server.

To summarise JIT offers:

Portability: F ulfils all o f Java‘s in herent portab ility aspects.

Security: It generally is not possible to analyse a program ‘s m ach in e code before execution an d

determine whether it does anything malicious. Tricks like writing self-modifying code mean that

the malicious operations may not even exist until later. But Java byte code was designed for this

kind of validation: it does not have the instructions a malicious programmer would use to hide

their assault.

Dynamic Loading: A dynamic Java application can continue to load new classes during

execution. However when a native static compiler turns a set of Java classes into a single

executable, only those predetermined classes are available when the program is run. This dynamic

capability is particularly useful for modifying the behaviour of an application while it is running,

rather than having to recompile or reboot before the changes take effect.

 180

It is clear then that JIT offers many important features key of which is dynamic loading, of

classes using RMI, which could well be a useful mode of inter-agent communication. Once

again th o ugh, JIT perform ance just isn ‘t quick enough for use in a real-time system (Perhaps

HotSpot could disprove this stance when it arrives).

The relative advantages and disadvantages of each technology can be summarised in Table 6.

Table 6: Compiling Pros and Cons

Ideally the agent developer requires an environment with the speed of native compilation, but

with the dynamic features that a JIT provides. This is a difficult problem and one that has no

clear solution at this time. However, the available technologies will improve as the market for

native Java compilers is only now developing and should witness severe competition in the near

future. Native compilers should show some sophistication in performing the global optimisations

but also support provided for key Java features like dynamic class loading, multithreading, and

security.

Compiling pros and cons

Product Pros Cons

Virtual machine
interpreter

Full awareness of object
properties Slow run-time performance

JIT (just-in-time)
compiler

Object awareness plus faster
execution

Longer load times due to compilation,
optimisations limited by need to minimise start-

up delay

Static compiler
Fastest possible execution
due to extensive (but one-

time) optimisations

Large executable files, platform specificity,
difficulties in using updated modules without

recompilation

 181

Conclusion
At this moment in time it appears that TowerJ is the leading candidate within the optimisation

technology field, as it offers the best possible speed whilst maintaining many critical aspects lost

on other compilers such as Dynamic Class loading. HotSpot offers major performance increases

to any project that involves a large number of threads. HotSpot offers improved thread

performance in two key areas: garbage collection and synchronisation. Both are critical to most agent

projects, but synchronisation problems could be significant, especially at the GUI where threads

are in contention, not only for CPU attention, but also for access to the graphics on-screen which

must be synchronised in order for the threads draw.

Other Performance Issues:
The Threading Problem
What is the problem with Threads?

It is envisaged that any typical multi-agent project will encounter performance problems not only

due to Java‘s inherent prob lem s, b ut also due to th e potentially large n um b er of th reads in use

and the apparent load this will place on the Java VM. However, in Figure 26 (URL9) it can be

seen th at m o st Java V M ‘s can handle large n um b er o f thread w itho ut h igh ly sign ificant

performance loss. (For detailed figures used in Figure 26 see Appendix B)

It may appear from Figure 26 that Native compilers offer no greater performance gains than

dynamic compilers. However, Figure 26 on ly in cludes Sym antec‘s crude n ative com p iler (w itho ut

optim isation) an d IB M ‘s H P C , w h ich is less th an perfect. It fails to in clude the perform ance

leaders such TowerJ, Supercede, or the best of breed JIT compiler by Symantec. It does however

offer us a general flavour of Java performance with a large number of threads.

 182

Figure 26 Java Thread Performance

Influence Of Choice Of Platform On Thread Performance.
Thread performance is highly dependent on the choice of platform used at runtime. Under

Windows 95 and NT, it is now routine for Java threads to be run as native Win32 operating

system threads that, in theory, should be scheduled by the Operating System itself. In a test by

PC World (URL10) much better results were achieved across the board under Windows NT 4.0

than Windows 95. Windows NT offers more robust scheduling and synchronisation than does

Windows 95.

 183

The reason for th is is W in do w s 95‘s dub io us W in 16M utex. W in 16M utex is a m ech an ism fo r

ensuring that only one thread in the system at a time enters the non-re-entrant 16-bit portions of

W in do w s 95‘s kern el. U n der W indo w s 95, the th reads fall co m p letely o ut o f synch with one

another, some ending long before others do. Under Windows NT, the 16 threads all proceed in

lockstep and finish in synch.

The author has compared a Windows NT system with a Solaris Spark system and found that it is

4 times faster.

Conclusion.
For optimum performance one should use Windows NT4.0 on a Pentium processor of a least

350Mhz.

Which Virtual Machine is appropriate?
For Speed.
Table 7 shows some benchmarking results using the near industry standard Volcano Mark tests

(URL11). The TowerJ compile beats all comers including the ultra-fast Microsoft VM and the

new JDK1.2, which include the Symantec JIT. TowerJ, however, is not free, and could be

potentially be bettered by Jove and HotSpot.

 184

Java virtual machine Scores Average (best 2 of 3)
Tower TowerJ 2.1.2 1715, 1761, 1749 1755

Microsoft SDK 3.0 P1 1398, 1408, 1414 1411
Novell JDK 1.1.5 1319, 1325, 1320 1323
JavaSoft JDK 1.2 1260, 1234, 1260 1260

IBM JDK 1.1.6 1217, 1214, 1207 1216
JavaSoft JDK 1.1.6 1119, 1117, 1111 1118

Microsoft SDK 2.02 1109, 1108, 1109 1109
SunSoft JDK 1.2 Dev 3 839, 837, 838 839

SunSoft JDK 1.1.5 546, 548, 546 547
Apple MRJ 2.0 319, 319, 323 321

Linux JDK 1.1.6 230, 234, 233 234
FreeBSD JDK 1.1.5 175, 175, 174 175

Table 7: Comparison of Virtual Machines

For GUIs.

The new JDK1.3 offers an ultra-stable and reasonably quick Virtual Machine. In addition it

includes Swing libraries, which are a radical rewrite of the widget set in AWT. Swing offers widgets

which are double-buffered, all can have tooltips, are extensible, track the tab key for focus,

support keybo ard shortcuts (―accelerators‖), an d are intern ation alisab le. B uttons an d L abels can

contain icons, built from GIF files, in any orientation. JPanels can have standard borders. JMenus

or JMenuBars can be added to any container. In addition the new Swing widgets are not slow

(They operate quicker than Windows 98 system menus.)

It also contains several other important features such as:

JavaIDL is now a core package, and JDK 1.2 contains a pure Java ORB. That means any Java

VM can act as a CORBA client or a CORBA server, and any Java object can become accessible

through CORBA.

 185

 RMI— Custom sockets can be used, sending RMI requests over SSL or IIOP. Also, a remote

object can remain dormant until created by a client request.

Transactions— Java now supports an implementation of the OMG/CORBA Object

Transaction Service (OTS/JTS) with an alternate Java API on top (JTA). This allows a single

transaction to comprise actions occurring on multiple VMs and multiple databases; all those

actions will either succeed or fail as one.

JDBC— Database access has been improved, with support for scrollable and updateable result

sets, batch updates, connection pooling, rowsets (sort of a Bean-enabled database view),

distributed transactions, extra data types, and so on.

Conclusion.
For development purposes TowerJ is recommended. However, for prototyping purposes the

JDK1.3 VM is highly recommended. It is quick, and although it is not as quick as the Microsoft

SDK VM, it includes several in-b uilt features th at allo w it to better use th e new A P I‘s in the

JDK1.3 libraries. In addition, HotSpot is only usable with JDK1.3, thus when it arrives seamless

integration with existing development environments is possible.

Integrated Development Environments (IDE)

V ario us in dustry stan dard ID E ‘s w ere exam in ed and assessed. It w as fo un d w hen exam in in g the

RAD approach (Rapid Application Development) to GUI building, that a great deal o f the ID E ‘s

tested utilised the component-event and AWT aspects of JDK1.3. However, now JDK1.3 is in

existen ce it is to b e exp ected th at m o st app lication developers w ill use Sun ‘s im pro ved graph ical

w idget set ―Sw in g‖ in stead of A W T . M an y ID E s w ere exam in ed an d on ly B orland‘s JB uilder h ad

full support for Swing. Visual J++ was excluded from assessment because J++ is tailored

 186

towards applications that are to be deployed on only on the Windows platform. To this end it

does not provide an open enough environment for developers producing agents in an

heterogeneous environment, and its proprietary use of WFC (Windows Foundation Classes) is

not n ecessary no w Sw in g h as arrived. A m ore detailed review o f availab le ID E ‘s alo n g w ith

conclusions can be found in Appendix A.

Multi-Agent Toolkits.
Criteria
There are a number of commercial/research agent development toolkits in the public domain,

with each catering to a certain type of system. In the context of this thesis, the toolkits examined

were largely KQML compliant and offered a lightweight communications platform suitable for a

distributed system. It was found that a large number of the toolkits on the market cater for

developers seeking to produce mobile solutions. These were, inherently, unsuitable for multi-

agent static systems, although some did provide good communication facilities.

It is reasonably difficult at this stage to select the most appropriate toolkit, as each toolkit has

been designed for a certain architectures/paradigm. Further, each toolkit is designed to be used

not only within a certain conceptual architecture, but also with one of several pragmatic solutions

to the implementation of this architecture. Thus it is fairly hard to select the best solution if one

does not yet know the problem. Until the agent designer has rigorously defined a conceptual

architecture, it becomes difficult to select a toolkit that is tailored to the individual problem.

To give an example of this problem, if the agent designer decides to have a central router running

(Agent Name Server, ORB, and Kernel) to which all the agents are attached and communicate

through, then toolkits like JATLite and Via are appropriate. If, however, they intend their agents

to have some inherent reflection mechanism, in which the agents have an internal model of the

agent system and know exactly which agent they intend to communicate with directly, then

toolkits such as JAFMAS, KAFKA or Voyager are appropriate.

 187

 Thus the approach taken here was to examine the most appropriate general toolkits on

the market and assess their architectural independent features. The following are some

of the major requirement assessments:

 Lightweight Communications Platform: To remove some of the overhead associated

with developing distributed applications.

 KQML compliant: Useful if toolkit supports some form of agent communication

language such as KQML.

 Speed: The delivery of intra-agent messages should be timely

 Ease of Use: Agent developers need a toolkit that is intuitive to use and that requires the

least amount of time to learn.

 Future Integration: Should try to be FIPA (Federation of Intelligent Physical Agents –

agent standard) compliant.

A full review of the multi-agent toolkits examined can be found in Appendix B.

Conclusion
The selection of the tools used by an agent designer is of vital importance as they help define the

system architecture. This section has outlined the problem of Java performance and has

recommended the use of the TowerJ compiler to increase performance to an acceptable

standard.

Development times can be reduced by the use of a suitable IDE. This chapter has concluded

that JBuilder 2 offers the best functionality and development tools. Further, it appears to be the

only IDE that supports JDK1.3 libraries such as Swing, which is of key importance to GUI

implementation.

 188

Lastly an examination of agent toolkits was made. Once again, as in the case of the Java

compilers, it is rather difficult to select the most appropriate toolkit as new tools appear on a

frequent basis. Each toolkit offers functionality that best suits a certain type of agent

architecture. For instance toolkits such as Concordia and Grasshopper and Aglets are suitable for use

with Mobile agent applications.

With this in mind it seems best to utilise the best aspects of various toolkits, each which offers a

functionality most appropriate to an agent projects general requirements. Thus for an agent

environment for use in a real time system, as described in this thesis, the recommendation of this

chapter is to use Voyager as the platform at the transport level. Voyager allowed the core

architecture to work with third party APIs, because it can utilise existing objects without having

to change them to exist in a distributed system..

 One might argue that Voyager does not offer KQML compliance, however it is the opinion of

th is autho r, after m uch con sideration , th at K Q M L com p lian ce is not essential. K Q M L ‘s forte is

in providing a simple transport syntax - an interlingua - for heterogeneous systems, with each

agent querying others for services. In a closed system there is no real need for the syntactic form

of KQML: in tightly defined closed agent system one can simply encode messages in objects and

focus on what to do with them, not on how to represent them. For instance there will be little

use in a closed system for the advertise, broadcast, broker, recommend etc. type performatives. All

agents in a closed system should know exactly which other agent they intend to communicate

with. Thus the use of KQML may very well be restricted to ask-one and tell type performatives,

which are easy enough to encode without third party libraries.

Thus the tools used in the construction of the AMEBICA agent architecture will be:

1: Jdk1.2 beta version:

2: TowerJ

3: JBuilder 2

 189

4: Voyager

5: Windows NT4.0

This chapter has shown what tools are needed to construct the adaptive system, the next chapter

details the conceptual architecture, and the fundamental tenets on which it was built.

 190

C h a p t e r 8

CONCEPTUAL ARCHITECTURE

Introduction
Having decided to adopt a multi-agent approach in the design of an adaptive presentation system,

the next step is to design a multi-agent architecture to support an implementation using the

chosen software development environment. Any chosen architectural approach needs to fit into

existing process control environments and be applicable across a number of domains. This

chapter therefore discusses the proposed architecture and the reasons for any imposed

constraints.

Conceptual Design

At the heart of the design is the notion of a multi-agent information presentation system that is

capable of adapting the information presented to the operators, dependent upon the context of

the state of the operators and of the process. The presentation system (which includes both visual

and auditory elements) will automatically adapt the presented information in order to enable the

operators to attain their current goals in the most effective manner.

A number of general architectural constraints have been adopted in the design (Khalil 1999a), as

presented in the following sections.

 191

Design Principles Adopted In AMEBICA
The Stream Concept

Process values arrive in continuous streams and these are rendered at the interface usually in some

standard graphical form (for example as a P & I Diagram). The usual graphical (or auditory) form

at the interface is often constrained by relevant industry standards. At any instant in time,

therefore, the interface will consists of a set of representation objects continuously being updated

by the process.

It is a key aspect of the design of the architecture of the AMEBICA adaptive system that it does

not operate on these data streams as they pass through to the rendering system, but operates via

its reasoning processes only on the set of representations at the interface. In other words,

adaptation occurs only at the rendering interface, not in the streams themselves.

This indirect coupling approach eliminates many problems that would otherwise occur –

particularly time constraints. Because of the stream approach, the operator receives information

on-the-fly in a timely manner, only then does AMEBICA modify the renderings as a result of its

reasoning processes. The concept is illustrated in (Figure 27). Adaptation only occurs after the

Process Model Agent has decided that adaptation may be required. This is signalled to the

AMEBICA system, which eventually adjusts the rendering

 192

 Figure 27 Stream Architecture

The Generality Principle

A second constraint on the architectural design is to make the AMEBICA system, as far as

possible, a generic adaptation system that maps events of discrete levels of significance - at the

input - to appropriate rendering characteristics at the output. To achieve this, no direct process

knowledge is embedded within AMEBICA, rather, AMEBICA has two domain dependent

interfaces – the Process Model Agent and the Abstract Rendering Interface. These two interfaces

allow it to be domain relevant. The Operator Agent informs the Process Model Agent about

operator interactions and the Process Model Agent is continuously monitoring the process output

streams. Thus the Process Model Agent can identify domain specific occurrences in the operator

or system environments and can send triggers to AMEBICA for adaptation. The Abstract

Rendering Interface takes general adaptation commands from AMEBICA and renders them in

domain dependent representations (Khalil 1999b).

AMEBICA therefore operates in a similar manner to a Java class file in that such a class file is

generic and applicable among many systems. However, to make this possible, the class file

requires a Virtual Machine (VM) that is highly platform dependent. The VM operates as a

Multi Agent

System

Process
Model
Agent

Process Data Streams
Local
Domain
Graphical/
Audio
Engine
(ARI)

Manipulations

AMEBICA

 193

translator, changing generic Java calls to system-dependant calls. The Process Model and the

Abstract Rendering Interface are the AMEBICA equivalent of the VM. Thus if an alarm of

relatively high importance occurs from a non-critical sub-system, the Process Model might

translate this to a low priority AMEBICA alarm. This is then processed and the resultant output

of the AMEBICA system is passed to the Abstract Rendering Interface, which realises the

rendering at the interface as a domain specific alarm. Thus to apply AMEBICA in different

processing domains, an appropriate Process Model Agent and Abstract Rendering Interface need

to be constructed.

Internally, therefore, AMEBICA operates in a domain independent way passing information in

w h at w e call ―A M E BICA-speak‖. T h e pro cess m o del con verts from ―p rocess-sp eak‖ (th e real

pro cess w orld) to ―A M E B IC A -speak‖, and eventually A M E B IC A com m an ds (in A M E B IC A -

speak) are converted back into domain dependent representations through the Abstract

Rendering Interface.

Spatial Adaptation Principle

There is some empirical evidence that operators have certain cognitive traits that are resistant to

change, and hence are particularly important for adaptive systems. These traits affect the way in

which an operator interacts with an interface and the requirements they need of an interface (Van

der Veer 1990)

 If the operator cannot cognitively adapt to interactions within the interface, then the

characteristics that prevent them doing so are suitable for system adaptation (Van der Veer 1990).

Spatial ability is one such characteristic and one for which AMEBICA aims to provide adaptation,

especially in terms of making it easier for the operator to realise where salient information is.

However it is also important that during adaptation, the spatial placement of information should

be maintained as far as possible. Thus we have bounded adaptation so that adaptation usually

occurs before information is placed on the screen. Generally speaking, once upon the screen,

 194

information should not be moved. AMEBICA, will place relevant information as near as it can to

other information of that type, it will also try to select the best representation for that information

in context (see flexible mapping), and use the best representation parameters (size, colour,

behaviour and so on).

Other general adaptation principles we have tried to follow are:

 All rules should be simple/straightforward: Complex rules often lead to unexpected emergent

behaviour, usually when separate rules are contradicting each other. One example of a

straightforward rule is giving certain general process events a priority. These priorities are

used later in the adaptation framework to help organise how AMEBICA decides which

renderings it should alter and which it should not. It makes this decision based on the

relative importance of each rendering, assigned to it by the Process Model Agent. Thus,

a simple integer priority is assigned for each type of event. So because alarms are of

greater importance than measurements, the following priorities are assigned for events of

these types: MEASUREMENT = 5, ALARM =8. The Process Model Agent also

assigns sub-priorities, which are specific to a type of event. For instance a temperature

alarm may be far more important alarm than a maintenance valve alarm, so: temperature=9,

maintenance=9. In this way the system determines not only the general importance of an

event (alarm say) but also its relative importance when compared with events of the same

type. So it might decide it can shrink a rendering that has priority 5,7 (in other words:

measurement=5, priority =7), over one that is 8,9 (alarm=8, priority =9)

 Limiting screen Adaptation: it is clear we do not want AMEBICA to adapt at the wrong

time, or to make too many adaptations of the wrong sort. These unwanted adaptations,

reduce user trust in the system, and thus make the system less efficient and liked.

 Operator Induced Renderings Should Not be Adapted: If the operator has requested a specific

representation then that representation should not be altered until the operator has

 195

finished with it. AMEBICA must not alter it once it is on screen and whilst the user is

working on it.

 Active moving of windows is limited. The operator has a spatial understanding of where

unserviced renderings are. If windows are moved around the screen it disrupts operator

effectiveness by altering their spatial map.

 Window re-sizing allowed: Re-sizing a window only partially affects the operators spatial

map, the operator still maintains an understanding of the renderings location, even if its

dimension has changed.

 Changing existing representations for alternative should only be used in limited circumstances. Changing

a representation when it is already being rendered at the interface can disrupt the

consistency of interface and therefore operator effectiveness. An operator does not wish

a rendering they are using, to change its representation form during manipulation. Doing

so may cause the operator to believe it to be a completely new rendering. However the

parameters of that rendering (colour etc) CAN be changed. Alternative representations

may be used when the system informs the operator of an imminent change (in an attempt

to draw their attention to the representation perhaps).

Adaptation Principles - Flexible Mappings and On-the-Fly

Adaptation
In traditional interfaces, a mapping is made at design time between the process parameters and

appropriate renderings at the interface. This mapping is usually the best all-purpose mapping

under a set of general constraints. Once selected, this mapping is then rigidly applied independent

of context even though in real life, mappings can change with context.

There are two alternative approaches to implementing adaptation. Firstly, the designer can

provide alternative representations at design time. The adaptation process is then concerned with

decisions between the provided alternatives. We call this approach a Flexible Mapping Approach.

 196

Secondly, Artificial Intelligence techniques could be applied (using a Knowledge Base of

appropriate representation types and rules for generating them) such that representations would

be generated at run-time. This latter approach we call On-the-Fly generation. Figure 28 illustrates

both approaches to adaptation. The latter approach is often difficult to implement because of a

lack of appropriate knowledge about the effectiveness of particular presentation mechanisms in

particular contexts.

In AMEBICA both approaches are used. The flexible mapping approach is used when there is

incomplete knowledge about alternative representations and their usefulness. In such cases, the

expertise of the interface designer is used to provide alternatives and guidelines for their use. The

on-the-fly generative approach is used for application areas where reasonable knowledge about

possible representations and rules for their manipulation exist. A good example is space or screen

management. In this case there are well-known rules about cluttering, zooming, translation and

Figure 28 Flexible Mapping

Process

Output
Class 1

Output
Class 2

Output
C lass …

Output
Class n

Output
Class Selected

Medium 1 Medium 2 Medium n Medium
Selected

MMI Media
(UIMS/MMI)

Design
Defined
mapping

S&C
system

On-the-fly
Spatial
Adaptation

FLEXIBLE MAPPING
SPATIAL
ADAPTATION

 197

highlighting.

The Agents and their Functions
 Stream Rendering – The Role of the Media Agent
Once the Process Model Agent has identified that a stream needs to be adapted, the responsibility

for adapting the streams of data from the process to the operators is vested in a set of Media

Agents. Each Media Agent (Figure 29) is responsible for a set of substreams of the total

Figure 29 Media Agent Streaming

process stream and renders them according to instructions from the main AMEBICA system. An

appropriate set of components of the stream is defined as a logically related domain set. For

example, in Electrical Network Management, there already exist well-defined collections of

objects (e.g. Transformer sub-stations, High level Transmission Networks), which always exist

together and are driven by a set of data values. Graphical representations also already exist for

these as industry standards. Initially therefore, the Media Agent will have these representations as

a default, and this set will be loaded when the system is initiated. So at initiation, the Media Agent

implements a default system. However, the Media agent will also have access to a set of

alternative representations for these streams (the Flexible mapping set) to enable adaptation to

take place when required.

Alternative representations
possibly in different media
(classified by representation
class) Updated by Process Model

Agent

stream
Rendering control

 The Media Agent

Rendering

 198

Adaptation occurs in AMEBICA when the Media Agents are directed to alter the nature of the

rendering by other agents in the system. The basic source of all adaptation triggering is the

Process Model Agent, which initiates adaptation as a result of a defined set of conditions in the

process/operator input or both. As a result a Media Agent will receive notification of an

adaptation requirement from the Process Model Agent and then it must negotiate with the rest of

the AMEBICA system to decide how these special conditions will be implemented and, after

negotiating with other AMEBICA agents, allocates a particular rendering mechanism for it.

For example, the Process Model Agent might detect that a temperature value in a particular set of

stream components has exceeded a defined limit. It notifies the appropriate Media Agent

controlling this sub-stream, that special notification status (this is an example of AMEBICA-

speak) now exists for the temperature rendering. The Media Agent negotiates with the rest of the

system, and eventually is told (say) to colour the value in red. It then modifies the parameters of

the graphical rendering to achieve this.

All Media Agents have at their disposal a number of pre-defined rendering representations for a

particular sub-stream (Graphics, Text, Audio) and each of these media has a set of pre-allocated

possible representations, one of which will be a default. The Media Agent decides upon a new

rendering (with help from other agents) and manipulates the rendering control for each medium.

Thus, the position of a graphic may be changed, the sound of an Audio channel may be altered,

or an entirely new representation loaded.

 199

Each Media Agent therefore has access to a large set of Graphics, Text, Voice, Sound, Animated

Diagrams or Video media, there may also be special effect Media

Figure 30 The Agent Streaming Architecture

such as ―F ish E ye‖ view s.

In addition, a Presentation Agent, monitors current usage of the rendering facilities at the

interface and offers summary information about unused rendering resources to the main

AMEBICA system. In doing this, the Presentation Agent offers on-the-fly generation facilities.

The information it provides can result in modifications to the spatial layout characteristics

(zooming, translation, uncluttering etc.)

The way in which Media Agents operate is illustrated in Figure 30 above:

Process data streams
Local Domain
Graphical
/Audio Engine Process

Model Agent

Presentation
Agent

Alternative Representations

Media Agent

Other Agents in AMEBICA

Change Representation, Medium,
shape, sound, colour,
distribution, emphasis,

Request
for change

1
2

3

4

5

 200

1. Data is currently being rendered as a set of sub-streams in some manner by a variety of

Media Agents. The Process Model Agent detects conditions in some sub-stream that

requires special action (the decision may also depend upon operator conditions as well).

2. The Process Model Agent communicates this in a domain free form (AMEBICA-

speak) to the Media Agent involved.

3. The Media Agent continues rendering as before, but requests assistance from the

AMEBICA system to decide on a new rendering from its set.

4. The AMEBICA system eventually decides on a new rendering and communicates this

to the Media Agent.

5. The Media Agent then modifies the rendering at the interface and adaptation is

complete. The Presentation Agent updates its view of the usage of resources at the

interface and offers new configurations to the system. It also provides a history of

media usage that will be later used to maintain consistency. The Presentation Agent also

provides the other AMEBICA agents with information about Resource Usage in the

Interface.

In the above viewpoint, the Process Model Agent, the Media Agents and the Presentation Agent

are mainly reactive in nature. The Process Model Agent reacts to the current state of the streams

and informs the Media Agents of special requirements. The Presentation Agent reacts to changes

in the screen and audio resources used, and informs the main AMEBICA system of the current

state of renderings. The Media Agents react to instructions from AMEBICA to adjust the

renderings or to changes suggested by the Process Model Agent.

In a future architecture these agents could be more deliberative, but in the first version of the

architecture they are largely reactive. There are other agents in AMEBICA that are, from the

outset, more deliberative in nature and these will be described shortly.

 201

The Role of Media Agents
One difficulty with Media Agents has been defining their exact role. They are, of course,

responsible for passing streams to an appropriate rendering at the interface, but a number of

issues were examined in deciding at what level of granularity they should operate.

 Are the Media Agents hardwired to particular streams, which they permanently represent?

 Is there a Media Agent for every stream?

 Is there a Media Agent for every type of event? (alarm)

 How does a Media Agent operate on non-stream variables?

 If a Media Agent is representing a schematic diagram representation, composed of a

variety of different types of renderings, how should they be decomposed? Should other

Media Agents be instantiated dynamically, or is the decomposition within the existing

Media Agent?

These are some of the questions that were argued over in the initial implementation. The

final approach adopted was as follows:

 Each Media Agent should represent an event.

 An event is an occurrence at the Process Model Agent that has been stipulated at design time,

as worthy of its own Media Agent.

 This means that ANY event at the process that – at design time – had several possible

mappings that could represent it, must be associated with a Media Agent.

From these decisions we can formally define some terms:

EVENT: An occurrence in the system either by the Operator or in the Process that warrants the

system undertaking some action. Generally, if an Event warrants the system action, it is the type

of situation, which at design time would warrant the designer having several different forms of

representation to represent it. So for instance an alarm condition in the process is a situation that

 202

would require system adaptation. It is also the sort of situation where at design time the designer

might create several different ways of showing an alarm situation. An Event is the initiator of a

Media Agent (which contains all the representations for that event).

An Event can not only be a direct occurrence in the Process that warrants adaptation, it can also

take more abstract forms. Later in the chapter Measurement and Schematic events are used as

examples. These simply mean that some initiating event in the System has warranted the system

displaying a Measurement or a Schematic type representation. So, if the Process Model has been

constructed at design time to display a Measurement Representation of a Valve, if the pressure in

a certain Valve in the Process has moved into a pre-defined range, the AMEBICA system would

see this as a Measurement Event. If several sub-stations in an Electricity Grid reach the same

voltage level, the Process Model Agent might issue a Schematic Event, ensuring the system

displays a Schematic of these substations, whose representation will be dictated by the system

context. Also, if an Alarm is being rendered at the interface, and has not been serviced for a set

amount of time, the system might issue an Alarm Event to the Media Agent controlling that alarm,

stating that it has not been serviced. Finally, Events can be operator derived, so if an operator

wishes to view a Measurement value, they will issue a Measurement Event from the interface.

REPRESENTATION: The actual composition displayed at the interface for a particular event.

Typically a Representation is a higher level view of an event, so the representations for an alarm

might be audible tone, flashing symbol, text, dynamic moving slider whose position represents the

severity of the alarm. A Representation can often be decomposed into smaller sub-parts. For

example, a schematic diagram might have a boiler (which can have temperature and pressure sub

representations) and a flow line with a valve, each of which are sub-components, which can be

rendered in different ways. These sub-components are called Rendering Objects.

RENDERING OBJECT: A single entity, typically part of a representation, but which can be

displayed independent of an initial representation. For instance a DIODE Rendering Object

 203

might be part of a circuit diagram representation, but may also be viewed independently of the

circuit diagram.

RENDERINGS: These are the physical manifestation of the conceptual classes of

Representations and Rendering Objects. A Rendering is the actual interface element that is

displayed and that can be clicked on by the Operator to request further functions.

An Example of Media Agent Decomposition

To give an example using the terms given above, there might exist a Schematic Media Agent, used to

render a schematic diagram. This diagram will consist of a number of elements that are driven by

events. At design time, several possible ways may be defined for representing how this schematic

can be presented at the interface. For instance, one representation could be a grid format. This

might take the form of a typical 2-D lined grid layout with transformers at set places on an

electricity grid. This representation has two types of Rendering Object – the grid and the

transformers on it as can be seen in Figure 31.

Transformer 1

Transformer 2 Transformer 3

Figure 31: A SCHEMATIC, with representation type GRID

Another type of representation might be a Table Format representation, which contains within it a

sim p le list, th at‘s sho w s the relevant values for each tran sform er. (Table 8).

Table 8 A SCHEMATIC, with representation type LIST

GRID LOCATION TRANSFORMER NUMBER NAME
0.2 1 Willowby One
1,0 2 Acacia Avenue
2,0 3 Station Rd.

 204

When AMEBICA is running, only ONE of the representations can be selected at any one time

for the Schematic Media Agent. It is the job of other agents in AMEBICA to advise the Media

Agent on the MOST appropriate representation to display.

Each representation is composed of one or more Rendering Objects. For example in Figure 31 a

GRID representation can be seen which consists of a grid Rendering Object and three transformer

Rendering Objects. Each of these Rendering Objects can be displayed independently and represented in

different ways. Thus if the operator wishes to check on the value of the voltage of an individual

transformer, they might select the transformer they want to examine and change its type of

Rendering Object from a Transformer symbol to a Transformer measurement.

To operate correctly it is necessary for the system to know how different representations or

different Rendering Objects are related together. Thus each Media Agent contains within it a

Media Selection Table. This table contains a pre-ordered list of representations deemed at design

time to be suitable for that particular type of Media Agent (so the Schematic Media Agent would

contain a table stipulating available representations as Grid Format and Table Format

representations). The order the list is set depends on the current Process Conditions. So if the

Process Conditions are normal it might set the highest-ranking representation as Grid Format since

it allows the operator to easily understand the topological relations between the transformers. If

however there is a disturbance and it is critical that the operator views the current voltage levels

the Table Format representation might be ranked highest.

To relate which representation is most appropriate for the process conditions the Media Agent

must contain meta knowledge which details this relationship. These are contained within an

objected called Representation Data. So the Table Format representation would have meta-data

contained within it that stipulates that it should be ordered higher than a Grid Format

representation, IF process conditions are disturbed.

 205

Each Media Agent also contains meta data on the relationships that the TYPE of Media

Agent/Representation/Rendering Object can have with other types of Media

Agent/Representation/Rendering Object. For instance a:

RENDERING OBJECT (TRANSFORMER) of TYPE: Symbol, Within a

REPRESENTATION of type GRID FORMAT Of EVENT: SCHEMATIC

Could be DISPLAYED as a

RENDERING OBJECT of type HORIZONTAL SLIDER, Within a REPRESENTATION

of type GRID FORMAT of EVENT: MEASUREMENT, by a Measurement Media Agent.

By this we mean that a transformer symbol Rendering Object on a schematic diagram could be

clicked on and it would change to a Horizontal Slider measurement Rendering Object. So instead

of seeing a static symbol representing the Transformer we would see a dynamic measurement

Rendering Object which represents the values of the voltage running through that transformer,

such as those seen in Figure 32. The difference is that the Schematic Media Agent is generating the

TRANSFORMER symbol, and a Measurement Media Agent will generate the appropriate

measurement representation (i.e. a Slider). A Transformer can therefore be represented by a set of

different Rendering Objects such as those in Figure 32.

 206

Figure 32 Different Available Representations For A Transformer

Thus a Transformer has a variety of different forms it can take within a Measurement Media

Agent. The choice of which Rendering Object the Media Agent does use can be made directly by

the operator or adaptively selected by the AMEBICA framework. Each Rendering Object that can

take on more than one form contains within it a list of all its allowable transformations. So a

TRANSFORMER Rendering Object will contain within it the knowledge that it can be viewed as

either as a Measurement or as a Symbol. This sort of knowledge will allow AMEBICA to know

which Media Agent to use for rendering alternate views.

 207

 An Example Case

The scenario described here expands on the example given earlier of a Transformer changing

form from a symbol to a measurement. The operator would click the right mouse button over the

Transformer symbol. Right clicking over the object accesses the relationship table within the

Schematic Media Agent and displays all the different forms that the Transformer can be displayed as.

The operator can then either SELECT whatever Rendering Object they desire OR let AMEBICA

chose an appropriate Rendering Object.

The way in which the two approaches are implemented is as follows:

a) AMEBICA adaptation to an operator request

The operator is currently viewing a Schematic diagram generated by the Schematic Media Agent and

wishes to observe the measurement values of gas passing through a valve Rendering Object on

the schematic.

To do this the operator moves the mouse pointer over the appropriate valve and presses the right

mouse button.

The mouse button click causes AMEBICA to check the relationship table for the VALVE

Rendering Object. The table tells AMEBICA that the valve can be displayed as a

MEASUREMENT or as a SYMBOL, and generates a list of the allowable event types

(Measurements and Symbols) and displays it over the mouse pointer to the operator. The

operator passes the mouse over the Measurement option and selects it. The operator then releases

the right button. The Measurement event in the representation table stipulates that it requires a

Measurement Media Agent to display it.

 208

The Operator Agent takes this information and passes it to the Process Model Agent. These

instruction contain a TAG indicating that the data came from the user and other associated

information

RENDERING CATEGORY: Measurement, FORM SELECTED: Not Stipulated,

RENDERING OBJECT: Valve Number: 111 RENDERED CURRENTLY BY: Schematic

Media Agent . FROM: Operator

The Process Model Agent receives the operator request and, if not already in existence, launches a

Measurement Media Agent to display the request.

The Process Model Agent then passes the TAG information on to the Measurement Media Agent. Since

the user has not stipulated WHICH exact presentation form of Measurement they require (Slider,

Dial, Text Values for instance) AMEBICA must decide upon the most appropriate form for the

circumstances.

The normal cycle of the Media agent contacting the multi-agent system begins and appropriate

representation and parameter information is eventually selected and returned to the Measurement

Media Agent.

The Measurement Media Agent finally renders the AMEBICA selected representation of the VALVE

Rendering Object.

b) Non-AMEBICA Adaptation to a User Request

The operator selects the VALVE, and not only selects MEASUREMENT, but also specifies the

TYPE of Rendering Object they require, say a DIAL.

This is done by the operator clicking the RIGHT mouse button over the Valve symbol, which

creates a menu with the allowable options for that symbol (Symbol and Measurement).

 209

The operator scrolls down to the Measurement option, which displays a sub-menu showing the

available Rendering Options available for that event (much like navigating a bookmark menu),

and the operator selects the DIAL representation

This information is passed to the PROCESS MODEL AGENT by the OPERATOR agent and

is TAGGED as being of type:

RENDERING CATEGORY: Measurement, FORM SELECTED: Dial, RENDERING

OBJECT: Valve Number: 111 RENDERED CURRENTLY BY: Schematic Media Agent .

FROM: Operator

B ecause th e operato r has chosen th is, A M E B IC A ‘s selection o f th e b est R E P R E SE N T A T IO N is

not required and the relevant Measurement Media Agent is launched and the Rendering Object for

DIAL is selected.

As the USER selects an event and representation then there is no need to contact the multi-agent

system. Thus the Media Agent can display the operator chosen representation immediately in the

default location.

The Process Model Agent
The Process Model Agent connects the real domain dependent world of the process with the

―p ure‖ ren dering w orld of th e adaptive system . O nce th is transition has been defin ed w e n eed

only discuss the AMEBICA world, represented as the multi-agent system. Eventually, the output

of the multi agent system manipulates the local graphics, video, and audio systems and since these

system s deal w ith ―real‖ dom ain o b jects the m an ip ulation s are relevant.

Some readers may find this idea of Domain Independence for AMEBICA hard to understand. To

understand the idea, consider a Pharmacist in the High Street who develops photographs for

clients (th e exam p le is a goo d one because th ey are ―renderin g‖ data for clients). H o w a

 210

photograph is developed will depend on the use for which it was made. For example, if a client

wants a Passport Photograph, it will need to be Black and White and 2.5cm square. A wedding

photograph will be larger , and in colour. The counter assistants, who talk with the customer will,

like our Process Agents, convert the domain knowledge (Passport Photo) to pure photographic

knowledge (B&W, 2.5cm square). When the processing actually takes place, the domain

knowledge is forgotten and all reasoning takes place in the Photographic domain.

The process model acts on streams of data that come from the process. Each stream is grouped

with other related streams, and their values monitored. The Process Model Agent (Process Model

Agent) has pre-set trigger values for each of these logically grouped streams. If the current stream

value exceeds these pre-set values then the Process Model Agent may instantiate an appropriate

Media Agent to adapt a rendering. Depending on the nature of the stream, it sets an Adaptive

System variable called Evidence Levels. The severity of the Evidence levels (an equivalent of

priority) determines the nature of the representation that will eventually be chosen. So if a stream

representing the temperature in a boiler reaches a critical point, the Process Model Agent might

set the domain independent variable Evidence Level to (say) a high level of 8 for the request to the

Media Agent responsible for displaying the temperature.

The Process Model Agent (Process Model Agent) is therefore customized at design time and

populated with pre-defined rules for triggering adaptation in incoming streams. When the

conditions for these rules be are met, the relevant data streams are grouped and sent as a logical

stream to the appropriate Media Agent. The Process Model Agent also has rendering categories

linked to an event. Thus for an alarm event (that is the Process Model Agent has found

conditions occurring on certain input streams that match conditions dictated by the user

customised rules.), there are several rendering categories such as Measurement, Alarm etc.

Therefore the Process Model Agent utilises logical rules for the inspection of the state of the

process/alarms and, based on the results, manipulates the data streams in order to change the

associate rendering category when particular emphasis must be given to a particular stream.

 211

As an example of this, consider a situation where a schematic layout of a sub-system is currently

displayed on screen, and is being handled by a Schematic Media Agent. Then a situation occurs

whereby one data stream feeding a boiler symbol on the schematic exceeds a rule-value threshold

in the Process Model Agent (for instance the value for temperature has exceeded a pre-defined

limit), and its rendering category can now be classed as alarm.

 This situation would need to be highlighted on the schematic diagram AND additionally may

also require the display of a separate alarm window containing temperature and pressure

information. In our scenario, a rule in the Process Model Agent would be triggered and would

send information on which boiler has gone into an alarm state to the relevant Schematic Media

Agent. In this case the adaptation would not occur WITHIN the representation of that schematic.

The Media Agent for that schematic would simply look up an internal table to determine what it

needs to do when one of the Rendering Objects within it reached an ALARM condition. This

lookup it may result in the boiler symbol being switched to RED and caused to flash.

A second alarm window would be created if the Process Model Agent determines from the rule

firing that an alarm media agent was also required. The Process Model Agent would then instantiate

a new alarm media agent, and would tap off a separate data stream to the one feeding the schematic

media agent and pass it to the alarm media agent. The alarm media agent contains within it knowledge

o f all th e p ossib le representation s o f an event o f type ―alarm ‖ and w ill p ass th is in form ation to

other agents in AMEBICA, for them to select the most appropriate representation.

Data Streams

The Process Model Agent divides input data into Streams. Each stream represents a set of

information that should be rendered using the same rendering resource.

Each Media Agent is in charge of the management of one stream. It controls the resource switch

to redirect the stream to the proper rendering resource.

 212

What kind of criteria may be used by the Process Model Agent to create streams? Three simple

types of mapping methods could be used in AMEBICA:

 Static per-component mapping

 Static per-media mapping

 Dynamic on filter basis mapping

Static per-component mapping

This solution consists in having a stream, and a Media Agent, for each component that the

alarms/events/measure may belong to. If, for example, designers want to group signals on

geographical basis they must define a different stream for each geographical area present in the

system.

This results in having a great number of streams and Media Agents running at any one time. It is

reasonable to assume that the number of possible streams can become a great deal larger than the

amount of rendering resources that may be active at a given moment. Therefore, this solution

implies a considerable waste of system resources. Moreover this method is inflexible, as the

designer has to strictly define all the possible sets of aggregation in the configuration phase.

Static per-media mapping

This solution consists in having a stream and a Media Agent for every rendering resource defined

by the user. This implies that the user has to detect all the possible significant situations during the

configuration phase.

As in the scenario mentioned above, this also results in having a great number of streams and

Media Agents running at any given moment, regardless of whether the predefined rendering

resources are available or not at that moment. This method of stream generation may involve

resources wastage if the user defines many rendering resources. On the other hand, if the number

 213

of rendering resources is quite small, this solution becomes too rigid a representation of the

system status. In fact, in the case of a disturbed status, where many alarms arise on a certain

system component, if the user has not previously defined a specific rendering resource for such a

component, this quite serious situation cannot be exploited by the adaptive system due to lack of

system flexibility to display it in a highlighted way.

Dynamic on filter basis mapping

This type of mapping method does not involve a rigid definition of all the possible streams in the

adaptive system rather it involves the dynamic creation of the data streams and their related Media

Agents. The user, during customisation phase, may define several rules, based on predefined or

customised system data. Using such rules the Process Model Agent can filter the process input

data to obtain a set of different streams.

For example the user may define a rule to create a stream if more than five alarms arise on the

system components belonging to the same geographical area. Using this rule a stream is created

only if in that moment it is really necessary for information rendering, and it is dynamically

destroyed when it is no longer needed, therefore ensuring efficient usage of resources. The user

can define many different types of grouping criteria, to cover all their specific needs, using logical

rules to decide what kind of information to render depending on the process status and incoming

alarms/events/measures.

Approach comparison

All three approaches described can be used for mapping process data to Process Model Agent

streams. The first two are based on static mapping criteria while the last adopts a parametric

 214

generation approach. In this case streams are generated at run-time on the basis of triggering rules

introduced during customisation.

Static approaches require defining all streams and Media Agents at design time. A number of

Media Agents are always running even when they have no role in the representation. A fixed

association of plant component and streams / Media Agents is both impractical and inflexible.

These types of mappings seem suitable only for simple applications with small numbers of

streams, components and Rendering Objects.

A dynamic approach is needed to match the requirements of a complex application with large

numbers of potential input configurations. In this case the resources actually allocated to the

system should be optimised; and a static approach cannot do that.

Rendering Category

As streams represent WHAT a designer wants to be rendered, and evidence levels their priority, so

rendering categories determine HOW designers want the rendering to be displayed. When the Process

Model Agent receives a signal, it uses logical rules to reach two goals:

 Find out all the streams the signal belongs to

 Determine the rendering categories of each stream

Each stream is managed by a Media Agent. The Media Agent receives the rendering category for the

stream from the Process Model Agent and then must only use an appropriate rendering.

Rendering categories represent the degree of evidence and importance of the stream for

representation. They are a conceptually independent of the process knowledge but are the result

of the process-dependent reasoning of the Process Model Agent. When a process data stream

 215

carries important information it needs to be highlighted (i.e. a process issue) and it therefore has

to be given a higher evidence rendering category (i.e. an AMEBICA issue).

Rendering categories are associated with integers; the higher the integer, the higher the evidence

level of the stream. The Media Agent contains a table, which may be customised by the user,

containing, for each rendering category, a list of all the resource types suitable for stream

rendering, ordered by preference criteria. This table may be different for each type of Media

Agent, and therefore for each different type of stream.

The Process Media Agent can, therefore, assign a rendering category to a certain stream to define

the level of evidence the information should have, regardless of the specific type of media the

Media Agent will actually use for rendering.

Overview of the AMEBICA Reasoning Process
The Media Agents actually instruct the Rendering System to display a particular representation.

To do this, however, they need advice from other agents in AMEBICA. There are two agents

that reason about rendering issues and enable instructions to be given to the Media Agents to

allow them to make a choice between representations. These are the Rendering Resolution Agent and

the Media Allocator Agent. The job of the Rendering Resolution Agent is to interpret a request for

change from a Media Agent and provide an ordered set of high level information representation

classes for further processing. This set is then passed to the Media Allocator Agent, which is

responsible for taking the final decisions about representation taking into account spatial factors

and constraints at the actual interface. It can do this because it is also provided with relevant

spatial information by another agent in the AMEBICA system – the Presentation Agent. The Media

Allocator Agent will try to fit the best representation suggested by the Rendering Resolution

 216

Figure 33 Overall System Context

Agent into the rendering interface. If this cannot be done, it will try to reorganize the output

renderings in some way.

 217

Rendering Resolution Agent (RRA)
The task of the Rendering Resolution Agent (as seen in Figure 33) is to determine an ordered list

of acceptable representation classes when requested to do so by a Media Agent. It arrives at the

ordered list after consultation with two other knowledge sources in AMEBICA – the Human

Factors Database and the previously mentioned Operator Agent. T h e R en derin g R eso lution A gent‘s

goal is to gather information from the Operator and Media Agents and send context knowledge

(including a list of appropriate representations) based on this information to the Human Factors

Rules Database. The Human Factors Rules Database uses its knowledge of the representations

and the context information (including implicit process knowledge passed on by the Media Agent)

to return a possibly re-ordered list of representations along with some parameter information.

Such parameter information might include colours of components or background, sizes, use of

text and so forth. It passes its priority ordered list to the Media Allocator Agent, which compares

the list against available interface resources (provided by the Presentation Agent) and makes a

final decision. Subsequent negotiation may be required if the Media Allocator Agent cannot find a

candidate within the list which meets the resource constraints.

To understand its process it is necessary to understand how the other actors in the reasoning

process operate.

The Operator Agent

The Operator Agent plays several roles. It monitors mouse and keyboard clicks and any

interaction the operator has with the system. From this, it attempts to deduce, what state the

operator is in. This information is then passed on to both the Process Model Agent and the

Rendering Resolution Agent. The Process Model Agent uses the information to make adaptation

decisions. The Operator Agent also logs all user requested events that pass through it. It then

passes this information to the Rendering Resolution Agent, which may append it to the

Representation List passed on to the Media Allocator Agent.

 218

The Human Factors Rules Data Base

It is not possible to apply domain independent HCI rules to select the best type of representation

without implicit knowledge of the context. It is therefore necessary at design time for the

designers to indicate the constraints that make one type of representation better than another and

in what type of situation. From this, a list of possible representations is generated for each event

situation, and these are stored within the Media Agent.. This might appear to contradict the generic

nature of the system, but this is not true, as the system needs to be customized before it is ready for

deployment.

On initiation the Media Agent takes the requirements from the process, accesses its

Representation Table and extracts a pre-set (design time) list of appropriate representations that

are rendered. This pre-ordered list is then passed (via the Rendering Resolution Agent) to the

Human Factors Rules Database that takes into account operator conditions and uses the generic

HCI rules to alter the parameters of the representations (such as size, colour, content) and the

order. It is to be expected that in some cases this list will be a set of representations that all are

suitable and are all of equal priority. The Human Factors Rules Database will then re-order the

list based on its context knowledge and HCI rules. For instance for a measurement value, the

Human Factors Rules Database might re-order the list such that the highest order representation

is text rather than a graphical medium. It may do this because it deduces that the current value is

within certain boundaries, such that the operator requires high accuracy in the information. Text

will provide this accuracy in comparison to (say) a Graphical Slider giving a better view of the

overall value in the context of several boundaries. Context is therefore very important and the

Human Factors Rules Database can only select the most appropriate representation and

parameters when it understands the full context (including the state of the operator and the event

history).

The initial set of representations are chosen and their default order is determined by domain

dependent rules customized within the Media Agent, and selected according to the nature of the

event the Media Agent receives. The Media Agent, therefore, delivers an ordered Representation

 219

List to the Human Factors Rules Database (via the Rendering Resolution Agent). Once the order

has been set, the domain independent HCI rules can re-order the list, and set the display parameters

for each representation (size, colour, positioning, flash, media). The advantage of this approach

over placing all representation choices within the Human Factors Rules Database, is

predominantly one of speed. Because there are multiple instances of Media Agents each selecting

its own pre-ordered list, a great deal of the workload for selection is taken off the Rendering

Resolution agent system. This is an important factor when alarm flooding is taking place.

The Media Allocator Agent

T h e M edia A llo cator A gent‘s job is to w ork o ut ho w to actually fit a representation into the

rendering system. It receives an ordered list of acceptable representation classes from the

Rendering Resolution Agent. It will obtain the appropriate list of representations for these classes

from the Media Agent, It will request information about current resource usage (visual and aural)

from the Presentation Agent, and will try to develop a solution for the most appropriate

representation class. In doing this it may have to modify other Media Agent representations in

order to spatially accommodate the new representation. The Media Allocator Agent has several

strategies to deal with the spatial adaptation problem. If it can find the best representation in an

existing space, it does so. Otherwise, it will try and reduce the size of existing renderings to

expand a large enough space for the current representation to be displayed. If it cannot expand

the free space, it may overlap existing representations, dependent on their respective priorities. If

the requesting representation cannot be placed using overlap/expansion techniques, the Media

Allocator Agent has the power to move existing representations, or queue the representation

(assuming it has a low enough a priority) until space is available on screen. If the problem is too

difficult to solve it may send a request for a revised list from the Rendering Resolution Agent.

The Presentation Agent

The Presentation Agent has a continuously updated view of resource usage on the interface for all

media. It also keeps a historical record of past representations and media use. It provides the

Media Allocator Agent with under utilisation data and over utilisation aspects.

 220

A Simplified Example Set of Interactions

Figure 34 An Example Set of Agent Interactions

As an example, consider the actions following a message from the Process Model Agent to a

Media Agent in Figure 34. Let us assume that a condition has occurred which requires the

information rendered by the Media Agent to be given a much higher priority

0: The Process Model informs the Media Agent of a problem in the Process that may require

adaptation to the current rendering.

1: The Media Agent informs the Rendering Resolution Agent that it has a problem, and that the

problem is one of increasing priority for its object (it would probably also describe this as an

alarm condition).

2: The Rendering Resolution Agent decides upon a prioritised list of possible representation

classes. It decides this after consulting other agents such as the Operator Agent and the Human

Factors Database. It concatenates this context information with the process independent AMEBICA

proprietary lingua-franca protocol. This protocol is in effect a translation of process dependent

Set of Media Agents

Presentation
Agent Media Allocator Agent

Rendering Resolution Agent

Process Model Agent
0

1

2

3

4

5

 221

terms to general AMEBICA terms, this is called AMEBICA SPEAK. This AMEBICA SPEAK

knowledge of the process condition that spawned this event, and with the Representation List.

This concatenated information is formed into one request for the Human Factors Rules

Database. The list is passed to the Media Allocator Agent, which determines possible candidates

from the list of the requesting Media Agent.

The Human Factors Rules Database receives the request, and returns its recommendations. The

Rendering Resolution Agent, takes these recommendations, resolves any conflicting answers and

forms a best-fit list. This best-fit list is composed of the recommendations offered back by the

Human Factors Rules Database.

The appropriate representations are marked as being the ones the Media Allocator Agent should

chose from, the best-fit representations. A second set of representations are also passed on with

crude re-ordering applied, and if necessary some general parameter information. This second list,

the normal representation list, is used by the Media Allocator Agent as a backup set of representations

in case none of the representations on the best-fit list can be rendered with the current available

interface resources. Typically, the Human Factors Rules Database will place the more

inappropriate Representations on the normal list. This generation of two separate lists increases

the reasoning speed within the Media Allocator Agent, as it has a smaller set of representations to

reason about.

Both lists are examined by the Rendering Resolution Agent, which has an in-built consistency

checker. Upon the Media Allocator Agent making a final decision on which representation is

rendered it returns the result to the Rendering Resolution Agent. The Rendering Resolution

Agent therefore has a history database. Using this database, it can determine what previous results

of Process Events of this type and under what Operator Conditions the Media Allocator Agent has

rendered. The Representations that have been rendered most often for a particular circumstance

are given increased priority on the best-fit representation list. This gives them a higher chance of

being rendered and therefore maintaining a crude form of consistency

 222

3: The Media Allocator Agent then checks with the Presentation Agent to determine if the

operation can be carried out (from a resource point of view). This may result in removal of

representations from the list.

4:

 (a) The best remaining list candidate is chosen and the Media Agent sends the appropriate

controls to change the representation.

(b) If the resources are not available, the Media Allocator Agent interrogates the other

Media Agents using the same resources to see if changes to their representation can free up

the required resources. If so, the changes are made.

(c) If not the Media Allocator Agent may have to renegotiate with the Rendering

Resolution Agent (as in 3) to get a new list of solutions.

5: The updated representation displayed at the interface informs the Presentation Agent of its new

size and position, so that the Presentation Agent can update its view of interface resource usage.

Conclusion
This chapter has detailed the main principles, stream and generality, on which the conceptual

architecture was constructed. These ensure that the reasoning process the system must make to

decide on an appropriate adaptation does not delay important data reaching the operator. They

also ensure that the system is generic enough to apply to a variety of process control domains, by

simply configuring the system at design time.

The chapter has introduced the main agents of the architecture and given an overview of their

function and goal. System properties such as domain independence, rendering category, data

stream selection were explained.

 223

Lastly, an example set of intra-agent interactions were given which demonstrated how the

adaptive system operates.

The next chapter gives a more in-depth explanation of the operation and mechanisms behind the

key adaptation agents.

 224

C h a p t e r 9

THE ADAPTATION AGENTS IN DETAIL: MECHANISMS AND
RATIONALE

Introduction
This chapter describes, in more detail, the internal workings of the key agents in the AMEBICA

system. In particular, it examines the Media Agent, whose job is to offer up lists of possible

representations to AMEBICA and, on receipt of a priority list, actually place the rendering in the

interface. It also maintains a record of the position of every object in the interface, and this

information is used by the Presentation Agent to maintain a view of current resource usage on

the interface. The chapter then describes in detail how the Presentation Agent monitors interface

real estate and provides information to the Media Allocator Agent to enable it to decide which

objects best fit into available spaces.

The chapter further describes the negotiation strategy adopted between the various agents for

selecting a best-fit representation. More sophisticated relationships between representation

objects (such as Satellite/Source and Parent/Child) are introduced to enable complex

interrelationships to be represented. Finally, timing and consistency considerations are discussed.

 225

The Internal Architecture Of The Media Agents
This section describes the internal architecture of the Media Agent, and more specifically how the

Media Agent informs the other reasoning agents about the rendering situation at the interface. It

is important for the correct operation of the spatial adaptation mechanism that the reasoning

agents have a correct and precise view of current interface resource usage (through the

Presentation Agent). Therefore, whenever the adaptation system (or indeed the operator) moves

a rendering (via its Media Agent) the new position must be registered.

Figure 35 The Media Agent Internal Mechanism

The internal Media Agent architecture shown in Figure 35 demonstrates how a Media Agent

keeps the Presentation Agent informed of changes to the spatial status of its rendering. An

important component of the architecture is the Monitoring Thread, which is linked directly to the

rendered object. It returns the size and positional parameters of its rendering. Upon receiving

MONITOR

RENDERING

THREAD

PRESENTATION
AGENT

NOTIFIER

DATA
SWITCH

CONTROLLER

REPRESENTATION
CLASS
TABLE

AMEBICA
SPEAK

PARSER/
CONTROLLER

A

B

C
c
1

D

E

F

C

AGENT
COMMUNICATION

LAYER

 226

update information from its rendering, the Monitoring Thread then passes on the raw data to the

Presentation Agent Notifier. T he P resentation A gent N otifier‘s job is to form at th e data into a

readable format that the Presentation Agent can understand. The best way to illustrate how the

architecture works is to demonstrate it through a series of scenarios.

Scenario 1: Initial Instantiation of a rendering and its later modification

This scenario first illustrates how a default representation is established by a Media Agent (when

a new rendering is required). It then shows how AMEBICA modifies such a rendering.

When the Media Agent is instantiated by the Process Model Agent, it is passed the appropriate

contextual information to identify the appropriate representations to be driven by the event that

caused it.

1. The contextual information is passed in AMEBICA Speak form (A) from the Process

Model Agent to the AMEBICA Speak Parser/Controller. This component interprets the

AMEBICA speak request and Evidence Level and, from these, deduces what it should do

with it. It additionally translates the information into appropriate Media Agent internal

calls.

2. After translating the request the AMEBICA Speak Parser/Controller now knows the type

of representation needed to satisfy that request. It then submits a request for the type of

representation it requires to the Representation Class Table (B) The Representation Class Table

holds knowledge of the appropriate representations for pre-defined Evidence Levels and

AMEBICA speak information. All representations appropriate for that request are

returned to the AMEBICA Speak Parser/Controller,

3. The AMEBICA Speak Parser/Controller now has a list of appropriate representations.

4. It selects the default representation from the list and the default location

5. The AMEBICA Speak Parser/Controller now knows the default representation and the

minimum size it can take (part of the parameter information associated with each

 227

representation). Its next job is to find out the best location to place the default

representation. At this stage it is important that the default representation get rendered as

quickly as possible. However, whether it immediately gets put on the screen, or not, is

w ho lly dep endent on the M edia A gent‘s priority. If it is above a certain threshold (alarm

value say) then it will be rendered immediately, in the pre-defined default location. If the

priority is relatively low, the Media Agent will query the Presentation Agent to establish

the location of appropriate space at the interface.

6. It asks the Presentation Agent (C) via the Agent Communication Layer, for the location of the

largest possible available space that can fit the minimum representation size (a parameter

common to all representations, this is stored with the representation itself).

7. The Presentation Agent returns information on the largest possible representation space

available (C).

8. The AMEBICA Speak Parser/Controller then has information on the default

representation, its size, location and the data streams the representation must connect to.

It must now pass all this information (D) to the Data Switch Controller which is responsible

for instantiating the rendering that corresponds to the representation, and connecting the

appropriate data streams to it

9. When it has finished establishing the rendering at the interface it starts (E) the Monitor

Rendering Thread. It is the job of the Monitor Rendering Thread to inform the Presentation

Agent of any changes in status to the rendering.

10. When the rendering has been fully instantiated it will return its status to the Monitor

Rendering Thread which (E) tells the Data Switch Controller that the rendering is successfully

being displayed at the interface. The Monitor Rendering Thread then informs the

Presentation Agent o f th e new po sition (F). T h is th en com p letes the M edia A gent‘s

instantiation of the default representation at the interface.

11. On receiving a modification request, the AMEBICA Speak Parser/Controller retrieves the

representation list and sends it to the AMEBICA framework, and awaits its suggested

 228

rendering. To do this it first formats these Representation List into the appropriate

AMEBICA speak format. It now has to ask the AMEBICA agent framework to return

the most appropriate representation, with parameter and location information. It thus

passes (C) the representation list to the Agent Communication Layer. The Agent

C om m unication L ayer‟s job is to route requests to the appropriate agent (Rendering

Resolution Agent) using the correct communications strategy (uni-cast, point to point in

this case)

12. The AMEBICA framework then returns the most appropriate representation with

parameter, size and location information. The Agent Communications Layer routes the

request back to the AMEBICA Speak Parser/Controller. It then formats the returned

information and adds other information about the connecting streams to the (D) Data

Switch Controller.

The process then repeats steps 9 to 12.

Presentation Agent: Maintaining an Updated Knowledge Base of

Interface Usage.
The previous section has shown how Media Agents can initiate adaptation and communicate the

present status of their renderings to the adaptive agents, and send updated rendering

size/position information to the Presentation Agent. Later in this chapter an examination will be

made of how the reasoning agents (Rendering Resolution/Media Allocator Agents) then select

the appropriate type of adaptation. Before this examination, however, it is necessary to

understand the operation of the Presentation Agent. Without an understanding of its workings, it

is difficult to grasp the nature of its interaction with the Media Allocator Agent.

 229

User induced changes of any sort at the interface (p 258) as well as AMEBICA adaptations, have

a significant effect on how AMEBICA apportions screen space to new events. It is the

P resentation A gent‟s job to keep track all these interface changes and to maintain an updated view

of the rendering space. It responds to Media Agents when they ask for available space in which

to place their renderings. It therefore plays a very important role and has three views of the

interface.

 Amount of spare, unused screen space.

 Where Media Agents renderings are currently located and their size.

 What priority each Media Agents rendering has.

The Presentation Agent knows where every rendering is and its current size, and it can use this

knowledge together with its knowledge of screen size to work out areas of free screen real estate.

The priority of a rendering is used by the reasoning agents to deduce the nature of the

representation, and how dominant it should be over available screen real estate, and how much

the current representation can overlap/expand on existing (lower priority) representations.

The Presentation Agent views every available discrete space at the interface as a Representation Space,

a special class that represents the space on the interface but also contains meta-data regarding the

renderings adjacent to it, and their minimum size and priority. The Presentation Agent maintains a

table of all the available representation spaces. It also holds information for each representation

space such as its location, the name of its Media Agent, its size, its priority and the minimum size

it can take. The information is placed in lookup tables as this allows quick lookup and increased

performance. The reason the Presentation Agent keeps information on mean and constituent

priorities is because this information is used by the Presentation Agent to deem whether a

representation space is suitable for adaptation or not.

The Presentation Agent therefore monitors current interface usage and the priorities of

representations occupying screen real estate. If a representation space is of irregular shape the

 230

Presentation Agent will split the representation space into several sub representation spaces of

regular shape. Each suitable representation space is entered into a lookup table.

When the Media Allocator Agent requests available space it sends the Presentation Agent

information on the priority and minimium size of the calling Representation. The Presentation

Agent uses this information to derive a specialist Repesentation Space class. This class contains all the

normal size/position information, but also contains the Presentation Agent generated

expand/overlap space. This is set up in terms of methods that can be called to find out the amount

of space that can be expanded/overlapped to the top/left/bottom/right of the calling

representation space.

Choosing The Best Representation Space
So, how does the Presentation Agent deduce which representation spaces are suitable for the

requested representation? It first iteratively cycles through its list of representation spaces and

determines whether the size of each is large enough, and if it is not whether it is a candidate for

expansion or overlap.

Figure 36 shows an interface which contains six visual spaces (A to F) with priorities assigned

(for example A = 3). For each representation space, the Presentation Agent defines a set of

edges (Figure 36) calling the top of the representaion space Horizontal 1, and the bottom of the

representation space Horizontal 2. It does the same for the vertical edges taking Vertical 1 to

represent the left hand side of the representation space, and Vertical 2 to represent the right hand

side. It makes no difference how the edges are defined as only one edge from the horizontal and

one from the vertical are used to make changes, regardless of actual position.

 231

Figure 36 Representation space Illustration

The Presentation Agent keeps a table of these values (Table 9) as well as tabulating the average

priority for each side thus in Figure 36 above we can see a representation space, surrounded by

windows. Each adjacent window is represented by a letter marking its position and a number

indicating its priority.

Vertical 1
Vertical 2

Representation
Space A

A = 3 B = 7

C =5

D =7

E =8

F = 8

Horizontal 1

Horizontal 2

Expansion
Space

 232

Representation A

Space (X,Y)

Horizontal1Priorities Horizontal1 Mean Horizontal2
Priorities

Horizontal2
Mean

150,200 3,7 5 7 7

 Vertical1 Priorities Vertical1 Mean Vertical2 Priorities Vertical2
Mean

 8,8 8 5 5
Table 9 Showing Horizontal and Vertical Priorities for Representation space A

The Presentation Agent receives information on priority and available space from Media Agents as

they are updated or initialised. In particular, it knows what the Minimum Representation Size is for

each rendering, and uses this information to deduce how much a representation space can be

expanded or overlapped. The Expansion Space is worked out by observing the renderings on the

side of the representation space that is being examined (say Vertical 1 in this example). The

Presentation Agent will look at (E,F) and can only expand as far as the minimum representation size

(shown in Figure 36 by a dotted line) of that rendering. Thus it knows that maximum expansion

size of vertical 2 is F. It can only expand if the priorities of the side to be expanded into are all

less than the calling representation priority. This information is added to Table 10.

The Agent also stores overlap figures. To work out these Overlap Figures (Table 10) the

Presentation Agent compares the priority of the incoming representation with the renderings along

the horizontal and vertical axis of each available representation space. It will then check each

representation space that has one horizontal and vertical axis whose average priorities are lower than

the incoming representation (information held in tables 8). For each suitable representation

space it will look up the available Overlap Space to deduce whether any Representation space can be

overlapped onto other renderings succesfully. In contrast to the expansion example given above,

if (E ,F)‘s average p riority is less than or equal to the incoming representation then the Overlap Space

is defined as (E). That is, the incoming representation is of greater average importance than the

renderings bordering that side. Thus since the agent is only performing overlapping (thus

keeping the original representations size, it just overlaps them). It takes E as being the greatest

distance that those representations can be overlapped.

 233

Representation A

Space (X,Y)

Horizontal 1 Expansion
Space

Horizontal 2 Expansion
Space

Vertical 1

 Expansion Space

Vertical 2
Expansio

n Space

150,200 50 20 100 40

 Horizontal 1 Overlap

Space

Horizontal 2

 Overlap Space

Vertical 1

Overlap Space

Vertical 2

 Overlap
Space

 70 50 130 70

Table 10 Showing Expansion Spaces for Representation space A

Tables of this sort are stored in the Presentation Agent, and are used by the Media Allocator Agent

to decide where and how to render a representation in an appropriate place in the rendering

space.

The Presentation Agent uses the tables in the following way to inform the Media Allocator Agent

of the suitability of a representation space.

1. It examines the list of representation spaces (in the tables) and compares them with the

minimum size of a representation requested by the Media Allocator Agent

2. If no Representation Space is suitable it attempts to finds a Representation Space that the

incoming requested minimum size representation can expand into or overlap. First it

checks the priorities for each representation space, starting with the largest and working

its way down, to determine which, if any, of the representations spaces can be expanded

into. If some representation spaces are found which can be expanded into, the

Presentation Agent now works out if any Expansion space is large enough by adding the

expansion space size to the representation space size. If one or more is found, it knows

the expand operation can be performed.

3. If no space is found that is suitably large, then the Presentation Agent will determine if

any representation space is large enough to be overlapped onto. Using the process

mentioned above (2) the Presentation Agent determines if any representation space is

 234

large enough and has suitable priorities to overlap into. Then each suitable

representation space is checked to see whether the overlap space is large enough for the

smallest of the best representations. If one is found, we then know that at least one of

the best representations will fit.

4. The Presentation Agent finally gathers all the suitable representations, whether they are

normal,.expand or overlap candidates and places them in a Vector which is returned to

the calling Media Allocator Agent.

If there are insufficient resources to allow either expansion or overlap to occur, the Presentation

Agent will return a no available space flag to the Media Allocator Agent.

Specific Examples.
Window Re-Sizing Case 1: Representation space adjacent to Screen Edge.

Figure 37 Screen usage limited by edge of screen

In the case where the Representation space is adjacent to the edge of the screen, (Figure 37) the

Presentation Agent takes the screen edges as being of maximum priority. The Presentation Agent

 A B

 C

 D

Representation

Space

 235

will then place the priority values and average for A,B into its internal table as Horizontal 1. It

does the same for C and D for Vertical 1. Clearly this representation can only expand along 2

sides. So if a representation cannot fit into the representation space, then its priority value must

be higher than A,B,C and D to expand into A,B,C,D. To overlap, the representation space

priority must be higher than A+B/2 to expand vertically, and higher than C+D/2 to expand

horizontally.

Window Re-Sizing Case 2: Representation space with Renderings on all Sides.

Figure 38 Showing Representation space when surrounded on 4 sides

In the case above (Figure 38), if the incoming representation has a priority value of 7, and is too

big both horizontally and vertically to fit into the representation space., the Presentation Agent will

look at internal priority tables before deciding whether the representation should overlap, expand

or do anything else. In this particular case it can expand into (A,B).(D) and (E,F) as all have

priorities equal to or less than the incoming priority. C having a priority of 9 cannot be

Representation
Space

 A =7 B=6

C=9

D=5

F=6

E=5

 236

overlapped by a representation with priority 7. In fact it would expand into (E, F) and (D)

because they have the lowest priorities. If we argue the case for overlap (which would not be

necessary here) then the same would be true with the incoming representation overlapping (E,F)

and (D) as they have lowest average priorities.

Window Re-Sizing Case 3: Representation space with Irregular Renderings on all

Sides

Figure 39 The case of an irregular shape.

In the case of an irregular shaped representation space (Figure 39), the Presentation Agent will

take and use the space with the greatest area. Thus, in the above L shaped representation space,

the Presentation Agent splits the space into two (marked by the jagged line), and only uses the

top part of the L. It then takes (D,E,A,C) as the representations surrounding the representation

Representation
Space

A

B

C

D
E

 237

space, and uses the same logic shown in the previous example to deduce whether expand or

overlap are possible.

The Media Allocator Agent: Finding The Best Locations And

Representation
It is the job of the Media Allocator Agent to try and make the best possible choice for a

representation of an event at the interface. It therefore has to take into account resource usage at

the interface (both visual and audio). Additionally, it attempts to keep its choice of

representation as consistent as possible with other representations of that type.

One of the major problems faced by the Media Allocator Agent is that of balancing the need to

provide the best representation (that is the representation with the highest priority) against

available interface space. For instance, consider the case of the Media Allocator Agent being

passed a list of representations. Of these representations, only one low priority representation is

able to fit onto the screen. Does the Media Allocator Agent select that representation? If it does

select the low priority representation, it has disregarded the best choice solution, which negates

som ew h at th e R enderin g R eso lution A gent ‘s job. Alternatively, the Media Allocator Agent

could take the first choice representation and attempt to adapt current screen usage to make

space for it.

There are several different strategies the Media Allocator Agent might adopt to cope with the

trade off between best choice representation and available interface space. The strategy adopted

in this thesis is best-fit list. Since the best-fit list consists of representations which are all suitable

for rendering then the Media Allocator Agent can utilise any representation. The real problem is

finding suitable interface resources to accommodate them. The mechanism for dealing with this

involves the Presentation Agent sending the Media Allocator agent a list of available Representation

 238

spaces. Upon receiving the list the Media Allocator Agent attempts to fit the highest ranking

representation on the list (the best representation as determined in the rankings set by the

Rendering Resolution Agent) onto the screen. To do this the Media Allocator Agent sends the

Presentation Agent the priority value of the representation along with the minimum size of the

smallest representation on the best-fit list. The Presentation Agent then uses this to send back a

list of appropriate representation spaces the Media Allocator can use to decide upon its rendering

strategy. It will initially try and display a representation from the normal representation spaces. If

this is not possible it has other available options such as re-sizing windows at the interface to

create another space.

Media Allocation Principles for Rendering Selections
To control how the Media Allocator Agents determines which spaces are suitable for what

representation there must be some general guiding principles. These principles are used to work

out some lower granularity rules later which will govern the window sizing operation.

 No active moving of windows is allowed. The operator has a spatial understanding of

where unserviced alarms are, if windows are moved around, it disrupts the operators

effectiveness.

 Window re-sizin g is allo w ed, as it on ly p artially affects th e operator‘s sp atial m ap.

 No selection of alterative representations is allowed for existing windows. This disrupts

consistency of interface and therefore operator effectiveness.

 Any representation can be selected an run-time as long as it fits interface resource

conditions.

 Although a representation being rendered on the screen cannot change its form (type of

representation) it can change the parameters of that rendering (colours, size).

 The time taken to select a representation that can fit onto the screen should be as

minimal as possible.

 239

 Media Allocator Agent should first select any representation on its best-representation list

that fits into current interface usage.

These general principles were used to arrive at the rules given below for the Media Allocator

Agents actual behaviour.

Media Allocation Rules
The Media Allocator Agent has several strategies to deal with the problem of fitting an

appropriate representation onto the current interface configuration. The basic strategies are

listed below in the reasoning order of the Media Allocator Agent. It will first try and fit a

representation into a normal space at the interface, without recourse to re-configuration.

Normal Fit: The Presentation Agent will return to the Media Allocator Agent a set of

representation spaces that are greater in size than the smallest configuration of the smallest

representation on the best fit list. It examines the priorities and also returns representation

spaces that are available to be expanded or overlapped if necessary. From this general list, the

Media Allocator tries to determine whether each representation on the best-fit list can be fit onto

the screen. If it can, they are placed along with the representation space into a Composite object

and stored on a sub list. The Media Allocator Agent then builds this list, and, if it can place the

highest ranking on the list on the screen without re-configuring the interface, it does so. If not it

examines the Expansion representation spaces.

Expansion: If it is not possible to fit high ranking representation of the best-list representations

into the available representation space, then the Media Allocator Agent may attempt to reduce

the size of the representations surrounding a representation space.

Overlap: If none of the representations spaces are suitable for expansion, then the Media

Allocator Agent will determine whether any are suitable for overlapping on X, Y. It is preferable

to try and expand a space, to allow all the involved windows to be fully visible, rather than to

 240

overlap. By overlapping only partial visibility of some windows is experienced. However in

many situations, screen real estate is not sufficient for the information needed to be displayed.

No Appropriate Space Can Be Found: If the Media Allocator Agent cannot overlap, expand or fit

into the representation space then it will try the representations on the normal representation list.

This occurrence will usually occur because the piority of the requesting event is of a lower value

than any of the surrounding windows, and the minimum size representation is STILL larger than

the available space.

This is ALWAYS the case UNLESS the event is operator requested. If the event is operator

requested then an attempt will be made to fit the representation for that event into the available

space. Otherwise the representation will overlap where the EVENT was requested, i.e. mouse

pressed, or overlap in minimum space. In fact it tries to first fit, then overlap. If neither case can

be rendered then it overlaps where the operator requested. operator requested events are always

of the highest priority.

Some Typical Examples Of Media Allocation Activity
In the next section a number of typical cases are examined, and a discussion is provided of how

the adaptive system reacts.

The Case Of Finding A Large Enough Representation Space To Fit A

Representation In.
The Media Allocator Agent passes the Minimum Size parameter along with priority information to

the Presentation Agent. The Presentation Agent first finds the largest available representation space,

and checks whether the smallest best-fit representation will fit. If so, it knows it can fit in at least

one of the best-fit representations. It then iteratively repeats this for all the available

representations spaces.

 241

If more than one representation space is appropriate, the Presentation Agent returns the appropriate

representation spaces with certain information (X,Y position of top left hand corner). The Media

Allocator then examines all the spaces and, starting with the highest ranking representation in the

best-fit list, attempts to find a suitable space. It will then return the selected representation along

with parameter information to the relevant Media Agent.

The Case Of Reduction Of Existing Renderings (Expansion Of A

Representation Space) To Accommodate A New Rendering
The following is how the adaptive system deduces expansion:

1. Presentation Agent checks to see whether expansion is possible by attempting to fit the

minimum size of the smallest representation into the largest available representation space

of lower priority. It checks whether it can expand by checking the Expansion size of that

representation space. It then checks every available suitable representation space (that is

of lower priority) and see whether any have a large enough Expansion Space to

accommodate the smallest representation. If none are found then skip to Overlap

procedure.

2. It gathers the list of representation spaces by compiling a list of suitable representation

spaces by finding representation spaces with more than 2 edges whose bordering

renderings are all of lower priority.

3. For each of these suitable representation spaces, the Presentation Agent deduces the

available expansion space. It does this by referencing its table of minimum sizes for the

bordering renderings. From this it notes whether expansion into each Media Agent

generated representation will reduce the targeted rendering to a size smaller than its

minimum allowable size. In this way it discovers which of the representation spaces can

be expanded into without making the surrounding representation unreadable, because

they have been shrunk too much.

 242

4. From this it works out the expansion space available, and hence the maximum size each

representation space can expand to.

5. This list of representation spaces which can expanded is returned to the Media Allocator

Agent. The Media Allocator Agent then attempts to render the highest ranking

rendering. If none can be found with the size parameters given by the Rendering

Resolution Agent then the minimum size for each representation is attempted.

The representation space composite object contains information the Media Allocator Agent

needs to re-configure the interface. This includes X,Y position of the top left hand corner of that

space and the two Media Agents which are to be expanded into.

To enlarge on the overview given above, the Presentation Agent first takes the priority of the

incoming representation, and for each Horizontal and Vertical of each representation space will

compare priorities of adjacent renderings. If it finds a Horizontal and Vertical axis, where the

bordering representations are ALL LOWER priority than the incoming representation, then the

representation space is deemed initially ready for expansion. It will not consider an axis as

suitable for expansion if one rendering is of higher priority.

 243

Figure 40 Representation Space Example

Once it knows two axis of a representaion space are ready for expansion, it will check to see whether

there is enough room on those axes to expand by checking the Expansion space. To deduce this

the Presentation Agent, uses its lookup table for expansion (Table 10) to deduce whether that

axis offers enough Expansion Space.

To give an example of why this system was chosen assume there is an incoming representation of

priority 6 as seen in Figure 40. Then rendering A can be reduced on Horizontal 1, but rendering

B cannot because it has a higher priority. We cannot reduce A and not B, because the

representation must have a straight side, and so A and B must be reduced equally. The same is

true of Horizontal 2, where rendering D is of priority 7 and therefore higher than the incoming

representation.. AMEBICA would not be able to reduce renderings E and F either, because both

have higher priority. It can however expand C on Vertical 2, however that gives us just one side to

expand into and we need two. Therefore in the case of the representation being of priority 6, this

Vertical 1
Vertical 2

Representation
Space A

A = 3 B = 7

C =5

D =7

E =8

F = 8

Horizontal 1

Horizontal 2

 244

representation space is unavailable. If we chose an incoming priority of 8, then this

representation space is suitable as ALL sides can be expanded into.

This provides the following additional rules for the Media Allocator:

RULE: Examine Horizontal/Vertical Priorities in table, if INCOMING priority is BETTER

THAN or EQUAL TO ALL representations on that side, then it can expand there.

RULE: For a Representation space to be suitable, there must be at least 1 horizontal and 1

vertical edge found ready for expansion.

The Case Of Being Unable To Expand, Therefore Representation Must

Overlap.
Because this strategy overlaps existing renderings, then the need to have ALL renderings above

the incoming priority is negated. However, it is preferable to overlap renderings of lower

importance. To ascertain whether a representation space is suitable for overlapping, the

Presentation Agent attempts to discover whether the average priorites of renderings bordering one

of the vertical and one of the horizontal axes are of lower priority than an incoming

representation.

The Presentation Agent deduces the average priorities for each represenation on-the-fly as

renderings are altered at the interface and the information is stored internally in a table. If two

sides are found of a single representation space that can fit the smallest representation on the

best-fit representation list then it knows it can overlap and an Overlap Representation Space list

is generated which is returned to the Media Allocator Agent.

The Media Allocator Agent then looks at each representation on the representation list, and

attempts to find a suitable space is found that can accommodate it. If no space can be found for

 245

any of the representations with standard sizes then the minimum size for each representation is

used until a space is found. If no representations spaces can be found, then the course the Media

Allocator takes is wholly dependent on the priority of he incoming event. If the event is of a very

high importance (urgent alarm) then the Media Allocather will force overlapping (so that the

Representation is forced on screen), otherwise other strategies are adopted (see next section).

The way forced overlapping works is by the Media Allocator Agent checking the normal representation

list (as opposed to the best-fit list) and attempting to find a representation that fits into the largest

available representation space. There will usually be a representation that will fit on this list, even

if it is not the best possible way to render an event. For instance, if text is one of the

representations on the normal representation list then it requires very little representation space to

accommodate it. Even if this space is still too great, overlap still takes place. The Media

Allocator simply displays the smallest possible Representation in the largest available space. The

reason for this is that although forced overlapping covers the underlying renderings with the new

representation, the underlying renderings are still there. If they are unserviced for a long time,

because they have been covered, AMEBICA will detect this and send an update event. AMEBICA will

then re-locate them if necessary. In this way the overlap case is quite different from the

Expansion case where the renderings surrounding the representation space are altered. In that

case they cannot expand past their minimum size because they become unreadable.

Alternative Strategies For The Case Of Being Unable To Expand Or

Overlap.
If there are insufficient resources available to expand or overlap succesfully then the strategy used

is that of overlapping the minimum size of the smallest representation into the largest available

representation space. However this is but one appropach, and others can be considered.

There are two ways to deal with a representation list that cannot fit into a representation space:

 246

 Put up dialog box asking the operator what they want to do with windows and options

available

 Have a queuing system which is utilised for events that cannot be displayed. When the

Media Allocator Agent Quorom notices that screen real estate has been made available or

that a representation space has increased in size, it will try and service the first event in

the queue.

The latter approach is adopted. The calling event that cannot be rendered is held in a queue

located in the Media Allocator Agent. The queue is formed and serviced in order of priority. The

queue is not serviced in order of time because if an event is held in the queue for some time, we

can expect AMEBICA to send an update event for it. The Media Allocator Agent services this

update event by increasing the priority of that event in the queue. By doing this the event will skip

several places in the queue, and should get serviced quicker.

Periodically the Presentation Agent notifies the Media Allocator Agent of current on-screen

priorities and space. The Media Allocator Agent will then check the queue status. If the first

event in the queue can be rendered with the new interface data it is put on to the screen as a

minimum size representation. The Presentation Agent will then send back to the Media Allocator

Agent the new space allocation including the updated event. The Media Allocator Agent will keep

moving down the list until all the queued events have been serviced.

Co-Ordination Process Between The Media Allocator Agent, The

Presentation Agent And The Rendering Resolution Agent
The Rendering Resolution Agent, Media Allocator Agent and Presentation Agent interact as

follows:

1. The Rendering Resolution Agent sends a list of appropriate representations to the Media

Allocator Agent. The Media Allocator Agent has a buffering system, and the incoming

 247

requests are time stamped and queued according to priority first then are arranged

according to a First-In-First-Out (time stamped) system.

2. The Media Allocator Agent receives two appended lists from the Rendering Resolution

Agent. These two lists are the best-fit list and the normal representation list. The Media

Allocator Agent must now try and find suitable screen resources for the representations

on the best-fit list first.

3. The Media Allocator Agent will then examine the current Representation list and extract the

minimum size of the smallest representation. This information along with the spawning

events priority is passed on to the Presentation Agent.

4. The Presentation Agent will return a list of representation spaces in which the

representations can be displayed. Each representation space object also contains

information on the amount of expansion/overlap space on each vertex and the name of

the Media Agents in the expansion/overlap space.

5. The Media Allocator Agent will decide upon its strategy based upon the rankings of the

representation and the available space.

6. If the representation selected needs to placed into an expanded representation space,

then the Media Allocator Agent will contact the appropriate Media Agents and inform

them of the axis and the degree of shrinkage required. The Media Agents will then

shrink their renderings, thus increasing the size of the representation space. The Media

Agents then inform the Presentation Agent which updates its view of the interface as

necessary.

7. If the necessary space has been made then the Media Allocator Agent will contact the

appropriate Media Agent (cross-referenced by Name, and passed to it as one of the

arguments in the event), and inform it of relevant positional, parameter, representation

and size information. The Media Agent will then render the selected representation and

load it with the appropriate parameters (size, colour, details and so on). The Media

Agent will then return the new updated information to the Presentation Agent.

 248

Intelligent Placement Of Related Windows: The Satellite-Source

Relation
The adaptive spatial reasoning process mentioned above places windows in available spaces

without constraint. However, in certain situations it is preferable for related windows to be

grouped together.

This capability is enabled by determining at design time the relation between certain

representations. For instance, there may be a representation of a sub-station that shows an

overview of the relations between certain transformers within that substation. To determine the

values of specific transformer voltage levels separate lower level representations are required,

each showing a single value. The higher level overview representation and the lower level

specific representations are related, and should therefore be placed close together so that the

operator can cross reference and switch between the information easily. In non-adaptive

systems, each window would be launched on the screen at a pre-determined point and would not

adaptively locate itself near to related windows. In our nomenclature we call the main window

that Source and the related windows Satellites.

The relationship between sources and satellites are determined at design time and placed as a

constraint within the representation data for the appropriate representations. Thus, when the

Media Allocator Agent processes the representation data it can determine whether the

representation is a source/satellite and decide upon an appropriate strategy.

This general relationship does not specify the exact nature of the spatial relationship between

representations. To ascertain this certain preferences can be contained as constraints within the

representation data for each representation. So, for instance, a satellite representation may have

constraints informing the Media Allocator that its prefered spatial position is below and near its

Source representation. The Media Allocator would then try and organize the interface as best it

can to accommodate this constraint. The constraints of this type contained within the system

are:

 249

 Above

 Below

 Right Of

 Left Of

 Near (can be applied as an AND condition to other constraints)

With the exception of the Near constraint, all the position constraints do not imply proximity to

source, they simply indicate relative position. Thus, if the positional constraint is “L E F T _ O F ”

the Media Allocator Agent only has an obligation to place the requesting Satellite representation

somewhere to the left of the source. Its main priority remains attempting to place the highest

ranking representation on the representation list somewhere on screen – in this case to the left of

the Source. Therefore, the Media Allocator Agent would rather place the best choice (but larger say)

representation some distance away from the source (if that was the only place it could

accommodate it) than place a smaller and lower ranking representation near to the source.

Not all representations have a Source/Satellite relationship, others are merely Related_To. This

constraint indicates which other representations a certain representation is related to, and allows

the Media Allocator Agent to attempt to place related representations in positions determined by

the spatial constraints listed above.

Example Source/Satellite Interaction For Location Position

Constraints (Below, Above, Right, Left)
1. A Source rep resentation n am ed ―B O IL E R 1A ‖ arrives at the M edia A llocator A gent. A fter

some interaction with the Presentation Agent the Media Allocator places the Source in the most

appropriate location.

2. A Satellite representation arrives at the Media Allocator Agent. The Media Allocator

recognises it as such by examining the Satellite representations constraint meta-data. The meta-

 250

data informs the Media Allocator Agent that representation is of type Satellie, whose source is

n am ed ―B O IL E R 1A ‖, and w hose p lacem en t con straint is ―T O _L E F T _O F ‖.

3. The Media Allocator Agent sends a request to the Presentation Agent for a list of currently

available Representation spaces. The Media Allocator Agent sends a request to the Presentation

Agent for the original source representation data, including its current position and size.

4. The Media Allocator Agent then derives a new list of available representation spaces, that

represent all the available spaces in the area set by the positional constraint (for instance to the left

of the source). To do this it extracts the (x,y) position of the axis (left axis here), and deduces the

(x,y) position of the appropriate axis of each represenation space (in this case the right hand axis

of the representation space). From these two co-ordinates the sub-list is derived.

5. Once the derived list has been obtained the Media Allocator Agent performs its normal

operation of examining each space to deduce whether any can fit the Preferred Size of the highest

ranking representation on the best-fit list. If none can be found it tries the other representations

on the list and attempts to match their Prefered size with the available space. If none can fit, it

starts again with the highest ranking representation and examines the spaces, any space that can

fit it in, and is greater in size than its Minimum Size constraint is suitable. Otherwise it repeats

this procedure with lower ranking representations until a possible sutiable solution is found.

6. If no appropriate space can be found, the Media Allocator Agent will first attempt to shrink

the source on the appropriate axis, if there are adjacent representations and if the shrinking allows

one of the best-fit representations to be placed in the freed up space.

7. If no space can still be found, then the Media Allocator defaults to an alternative Near

strategy. It then attempts to place the representation somewhere near the Source.

 251

Example Source/Satellite Interaction For Near Position

Constraints (Below, Above, Right, Left)

Figure 41 Source/Satellite Relationship

1. The procedure for Near is identical to the positional constraints mentioned above up until the

point where the available representation spaces are retrieved along with source data. (Steps 1-3

above).

2. The Media Allocator Agent then needs to deduce the centre of the Source representation, and

the centre for each of the available representation spaces.

3. It therefore cycles through the representation space list deriving the centre for each

representation. It then can use this to deduce the distance each space is away from the source.

4. The method used to deduce the distance is rather simple and can be seen in Figure 41. From

deducing the two centre points, the hypotenuse (distance in other words) can be simply deduced

usin g P yth ago ras‘ theo rem . T h e distance for each representation sp ace is th en added to its m eta-

data

Representation

Space

Source

 252

5. The Media Allocator Agent then cycles through the representation list and sorts the list by

order of distance.

6. Each Source contains within it a parameter called Near Distance. This stipulates the distance

the designers class as being near. Thus it may be that anything within 200 pixels is classed as

near. The Media Allocator Agent uses this parameter to try and see whether any of the

representations that fall within the Near Distance can hold the highest ranking (best)

representation of the Satellite to be placed. If there are more than one it selects the nearest.

7. If it cannot place the highest ranking representation of the satellite within the Near Distance, it

calls upon another parameter in the source called Suitable Distance. The Suitable Distance represents

a distance further out than Near but still allowable (Figure 42). It then follows the same

procedure seen in part 6. If the highest ranking representation cannot be placed within the

Suitable Distance, it goes back to part 6 and tries to place the second highest ranking representation

within the Near Distance. The process of 6-7 is then repeated until one of the representations in

the best-fit list can be placed in either a near or suitable distance.

8. If none of the best-fit representations can be placed at a Near or Suitable distance, the Media

Allocator Agent examines the remainder of the representation spaces and simply attempts to

place the highest ranking representation as close as possible to the source. If it cannot it cycles

through others on the best-fit list.

Figure 42 Source/Satellite Relationship For Near Constraint

Source

Near
Suitable

 253

Media Allocator Agent: Other Interface Manipulations - The

Parent/Child Relantionship.
The spatial adaptation so far described in this chapter relate to single representations. However,

in process control it is normal to have large representations (Electricity Network Grid say) -

termed here the Parent - composed of many smaller composite representations (Substations on

the grid) which are termed Children. In such cases the normal form of free spatial adaptation is

not possible on the lower granular representations since they are fixed in their position on the

larger representation. This does not mean, however, that the Adaptive System cannot act on

these representations, it is still free to alter the form of the representation as long as it does not

alter the configuration of the large representation. Any adaptive action taken on the Children

Representations is performed through their respective Parent Representation

The parent representations can have normal adaptive functions performed on them, such as

being changed in form (type of representation) and position/size (spatial adaptation). However,

by virtue of being a composite object, other adaptive functions are applicable such as:

 Zoom: The Media Allocator Agent can set the zoom factor on a composite object, so

that certain areas of the Parent object are magnified or reduced as necessary to produce

the best possible view of the representation for a certain context.

 Translate: The Media Allocator Agent can move the representation around to the area

required to be viewed. Thus, if the parent representation is an electricity network grid,

which is much larger in size than the limited viewing window (container), the Media

Allocator Agent has the capability to move the underlying larger representation around so

that the area in view is the most appropriate in a certain condition.

 Update: The Media Allocator Agent can send an update request, which informs the

parent representation that it should update all its children. In some cases, the children

may have changed representation, but since the Parent controls what is viewed this

 254

change may have not been performed by the Parent. The update control ensures all

Children displayed are in their most current context.

Example Of Parent/Child Adaptive Behaviour
1. The Parent Representation is initialised and processed by the Media Allocator Agent.

2. A Process condition occurs that requires a Child Representation to update its priority from a

low value to a high value.

3. The Media Allocator Agent receives the Child Representation, and obtains from it the name

of its Parent Representation.

4. The Media Allocator Agent then sends a request for a list of all the current children of that

Parent Representation from the Presentation Agent.

5. The Presentation Agent returns the list of current Children. The Media Allocator Agent

then has to decide whether the priority of the incoming Child Representation warrants re-

configuration of the Parent Representation. It does this by comparing all the priorities of the

children.

6. It will then decide that it is important that the two highest priority children should be visible.

It takes the relative co-ordinates of the two children (relative because they are only applicable

within the Parent Representation, and are quite different from the absolute co-ordinates used for

normal window adaptation) and deduces the area that should be visible to include those two

children.

7. It forms a visible rectangle area, and sends this to the Parent Media Agent, which sets the

Zoom/Translate settings so that these two Children are visible.

 255

Figure 43 Children Representations Outside Of Visible Area

Figure 44 Children Inside of Visible Area

Visible Area

Child 1

Child 2

Visible Area

Child 1

Child 2

 256

The After Zoom/Translate Effects
Once a zoom or translate has been activated, the visible screen real estate changes. This means

that the currently visible sources may be different to the original configuration. If this is the case,

the system tries to maintain the source/satellite relationship. Therefore after each zoom the

Media Allocator Agent queries the Presentation Agent for an updated current view of which

Sources and currently visible. From this it requests the Presentation Agent for the sources

attached to the specified Sources.

Upon receiving a list, it orders the list according to:

1. The Priority of each Source.

2. The Priority of each Satellite

Where at the top of the list is the highest priority Satellite of the highest priority Source, and the

bottom of the list is the lowest priority Satellite of the lowest priority Source.

Once the list has been ordered the Media Allocator proceeds to service each positional constraint

of the Satellites (to_left,near etc) and attempts to place them as required.

AMEBICA Consistency
Consistency is always a difficult issue within an adaptive interface. Having too many different

representations of the same type of event rendered at the interface might confuse the operator as

to their purpose. T h is can som etim es contradict th e adaptive system ‘s prim ary go al o f

dynamically selecting the best representation for the context in which that event occurred. By

performing this goal without taking into account ther issue of consistency, it is conceivable that

there may exist, at the interface, different representations of the same type event. For example, if

there are several measurement events represented by several dial representations on screen, and

another urgent measurement event occurs in a boiler, AMEBICA might decide that since the

 257

origin of the event is from a boiler, a thermometer representation might be appropriate, coloured

red to indicate the urgency. If consistency was absolutely adhered to AMEBICA would select

another dial and not a thermometer, thus making the whole reasoning process redundant.

There is this conflict between the two goals of selecting the most appropriate representation, and

keeping the interface as consistent as possible The system therefore, as far as possible, tries to

balance these goals.

To do this, the adaptivity agents need to have an idea of interface representation history.

Therefore the Media Allocator Agent has a consistency database. This is also used by the Rendering

Resolution Agent which takes into account the history for each representation event it considers.

If it sees that in the past several representations have been presented at the inteface in the form

of one particular represenation, it will raise the ranking of that Representation in the

Representation List. This ensures that that representation has a better chance of being rendered

by the Media Allocator Agent.. Additionally, the Media Allocator Agent uses the Consistency

Database, when considering a set of Representation that can be rendered on screen it will select

the consistent represenation as long as all things are equal.

If there are choice of several representations that can all be equally fitted onto screen.

AND

If all of these representations are of equal priority.

AND

If there are other representations of the same event and of the same priority already on screen or that have been

recently displayed,

THEN

select the representation that has been used most at the Interface.

 258

Affect Of Operator Induced Changes At The AMEBICA Interface
The above sections have mainly concentrated on the way the AMEBICA system operates on

events from the process itself. How should operator induced change at the interface affect it?

As the operator moves renderings around the screen, changes their size, or kills them,

AMEBICA should not attempt to dynamically adapt to these changes. In other words AMEBICA

does not attempt, on-the-fly, to update the interface as soon as the operator has finished altering

it.

Rather, AMEBICA will only react to operator induced changes when new events arrive which

require AMEBICA to render a representation in response to them. Thus, as AMEBICA

attempts to place the representation on screen, it will note that the operator has altered the

interface usage resources and, through the Presentation Agent, will notify the framework of these

changes. It therefore acts in the same way as it would in normal circumstances, with the

Presentation Agent simply noting an alteration in resource usage and updating its tables.

An important point here is that the current window, that the operator is working on, should not be

altered by AMEBICA. This is the case even if this current window is overlaying several other

important windows. However, AMEBICA can eventually realise that the underlying windows

h ave no t b een serviced (prob ab ly because they are not visib le, they are co vered by th e operator‘s

window) and try to adapt or emphasise the underlying windows to get the operators attention.

So how do changes that are operator induced ripple through to AMEBICA. The operator can

perform two types of task:

1. The operator can affect the size parameters, or the location of a rendering.

2. The operator can induce changes on the rendering itself, such as alter the type of

representation, or change some internal parameter (colours etc), or indeed kill it.

The mechanism for dealing with these two types of operation is completely different.

 259

The Two Types of Operator Induced Change
Type 1: Operator Affecting The Size Parameters Or Location Of A Rendering

In this first case, the operator induced change is merely one of altering screen real estate usage.

This is important for forthcoming events, which need to know of any changes of interface

resource usage. Such operator induced changes are observed and recorded by the Presentation

Agent. This alteration of the spatial parameters of a rendering has no direct affect on the Media

Agent responsible for the rendering. All changes induced by the operator are handled by the

renderings themselves in the normal way. Windows can be moved and overlay other windows

without any recourse to adaptation.

Type 2: The Operator Inducing Changes On The Rendering Itself Including The Type

Of Representation Or Internal Parameters

In the second case the operator is actually performing an action at the interface that involves

AMEBICA changing state in some way. Any action, which involves AMEBICA changing state,

should involve the Operator Agent. In this way the operator effectively requests a change of state

via the Operator Agent. In other words if a rendering receives a request from the operator for a

state change, it informs the Operator Agent, and awaits the requested change to occur from the

Media Agent controlling it.

So if the operator clicks on a Symbol Rendering Object type rendering and requests a measurement

value for that symbol (say the voltage values of a transformer symbol), then AMEBICA will

require a new M edia A gent to disp lay it. In stantiatin g a n ew M edia A gent affects A M E B IC A ‘s

state and the request for this state change should come through the Operator Agent.

Additionally, if the operator requests another representation of a Rendering Object they are

viewing (want to change from DIAL measurement to THERMOMETER measurement), this

demands a change at the Media Agent displaying that Rendering Object, thus inducing a state

change of AMEBICA.

In the following section a more detailed examination of operator induced changes is undertaken.

 260

The Role Of Renderings On AMEBICA State By Operator Induced

Changes
This process naturally implies that the rendering itself, be more than just a simple window. Each

representation at design time contains knowledge about the ways in which it can be manipulated.

So if a operator clicks on the Rendering Object of a symbol for a resistor, for instance, the

Rendering Object of the resistor will be able to lookup what other possible Rendering Object

forms that resistor can have in AMEBICA. The operator might then decide to view a

measurement type Rendering Object of the resistor symbol. This will involve the resistor symbol

Rendering Object making a request for a measurement type Rendering Object to the Operator

Agent.

Therefore each rendering must have two types of knowledge associated with it, first it must know

how to communicate with the Operator Agent. Secondly, it will have to know not only all the

alternative forms it can take, but also all the alternative forms its constituent sub objects (usually

Rendering Objects) can take (for instance what other forms the Rendering Objects in the current

Representation can take). Again, this is simply added to the sub-objects at design time, in this

case the resistor symbol knows it can also be viewed as a measurement.

For communication with the Operator Agent the rendering (be it Rendering Object or

Representation) must communicate at an agent level, and must therefore have pre-set

communication strategies in which it fills in gaps with variables that have been operator selected.

For instance, at instantiation time the Media Agent will pass a name argument to its rendering, so

that the rendering knows which Media Agent is responsible for it in the AMEBICA framework.

So a pre-set communications strategy requesting change of representation is a single string in

KQML syntax of the form:

From: [media agent name]
To: Operator Agent
Ontology: Rendering Object

 261

Content: (Representation Change) From: [current Rendering Object] To: [user requested
Rendering Object] Request Type: Operator Request)

WHERE italics represent a design time communications strategy for state change of type

representations. The words in (square brackets) are variables that the rendering fills it at run

time with variables it obtains from the operators changes.

Each rendering will be able to link operator requests with the appropriate communications

strategy and will be able to extract from a operator request the appropriate variables to complete

the request.

Figure 45 Sequence of Events Leading to Media Agent Instantiation
and Operator Request For Adaptation

So we can see the pattern of events that follow a Rendering Object request in Figure 45. If we

take these events from the very start we get the following order

1. The PM (Process Model) Agent receives a process event that requires viewing at the

interface.

2. The PM Agent instantiates a Media Agent (A) and informs it of the type of request.

Rendering

Object

Operator
Agent

PM
Agent

Media
Agent

A
B

C D

 262

3. After talking to the framework the Media Agent selects an appropriate representation. It

maps the selected representation and parameter information to an appropriate Rendering

Object, which it instantiates and connects to the appropriate streams (B). It also passes

in the form of an argument to that object its name, so that the Rendering Object knows

which Media Agent is responsible for it.

4. The Rendering Object now receives a request from the operator for a change of

representation. The Rendering Object selects the appropriate communications strategy,

fills in the gaps and sends the representation change request to the Operator Agent (C).

5. The Operator Agent frames the request and adds any further information, as well as

logging the request. The Operator Agent then passes the request onto the Process

Model Agent. (D)

6. The PM Agent realises the request if of type Operator Request and is also a request for

Representation Change. It therefore does not need to make any further streams available,

and so formulates the request in an appropriate AMEBICA speak form for the Media

Agent (A).

7. The Media Agent kills the current Rendering Object and connects up the streams to the

new – operator selected Rendering Object. It places the new Rendering Object in the

same space as the old Rendering Object.

It might seem redundant for a operator request to go through the Operator Agent and Process Model

Agent to reach a Media Agent. However, each of these stages are significant at different times and

for different reasons. The Operator Agent will log all requests going through it to get a clearer

picture of operator activity. This log is used by the Rendering Resolution Agent later for

representation selection. In addition to receiving direct information from renderings it monitors

operators activity and inactivity at mouse and keyboard.

The Process Model Agent is notified because the operator request may require extra streams, or

may trigger events at the process. For instance if the operator selects a different geographical

area of a map representation, it will require the Process Model Agent to match that requests to

 263

appropriate streams. It may also require the Process Model Agent to launch a new Media Agent

to represent the new streams.

Other Architectural Performance Constraints
Time And Operator Adaptation: How The System Adapts To Time And

Operator Constraints
The Role Of the Operator Agent when Adapting to Time and to the Operator.

The Operator Agent plays a key role in the mechanisms for dealing with adaptations initiated by

time delays and operator requests. For example, the Operator Agent can act on th e op erato r‘s

wishes (closing a window, making a request to enlarge a window or turn a sound off for

instance), by interacting with the Process Model Agent. Thus it will adapt the interface as the

operator requests it to. Additionally, the Operator Agent m o n itors th e operator‘s activities and pro-

actively acts upon them.

So if the operator has been inactive for long periods it might infer that the operator is

inattentive. To counter this, it may request that the Rendering Resolution Agent increases the

Evidence Level, thus ensuring current relevant renderings have accentuated presentation formats

thus drawing them to the operators attention.

Role Of Media Agent when Adapting to Time.

The Operator Agent can only deal with certain time adaptation problems. One possibility is the

changing of a rendering status over time. For example, if a rendering, which represents an alarm,

has not been serviced over a period of time it may need to increase its evidence level in an attempt

to draw th e operators‘ attentio n to it, and th us get serviced.

The Process Model Agent has within it pre-defined (design time) knowledge of how much time

an alarm can remain un-serviced, before its priority needs to be increased (thus adapting the

representation over time). So when an alarm is received by the Process Model Agent it assigns an

 264

appropriate priority level to it, and uses this priority to deduce the allowable time that alarm can

remain unserviced. After passing information on priority and stream allocation on instantiation

to the appropriate Media Agent the Process Model Agent copies this information to its event list.

The event list contains within it all the alarms the Process Model Agent is monitoring and the times

at which each must be checked. When the time arrives that an alarm must be checked, the Process

Model Agent checks the stream response values for that alarm, if they are still at the same level

(that is the alarm is unserviced), it proceeds to increase the priority for that alarm to a pre-

determined level.

It then informs the Media Agent responsible for the unserviced alarm to increase its priority. This

sets in motion the normal process of checking with the Rendering Resolution Agent and Media

Allocator Agent for selection of an appropriate rendering and parameters. The only difference

being that it increases its evidence level by an amount stipulated at design time as appropriate for its

time threshold being exceeded.

It passes a Flag to the Rendering Resolution Agent indicating that it is making a request for increased

priority of an existing Media Agent and NOT for instantiation of a new rendering. This flag is

passed along with the ordered list to the Media Allocator Agent. This flag informs the Media

Allocator Agent that the rendering currently exists at the interface. The Presentation Agent is then

informed so that when it comes to re-ordering the list it can look for representations that equal

the current rendering PLUS ANY extra available screen real estate. Without the flag, the Media

Allocator Agent would assume the request is for a new event and may actually REDUCE the

requesting Media Agent to accommodate what it sees as a new event.

This process explained above will vary depending on the level of increase of priority set by the

Process Model Agent. If the increase is only slight the system will not change that type of

representation only its parameters. The Rendering Resolution Agent will use the increased

priority to highlight the representation (using colours or size), and pass this information on to the

Media Allocator Agent, which then affects the changes without the need for utilising the

 265

Presentation Agent. If the change in priority is much larger, a drastic change of Representation

might be required and the Presentation Agent must be brought into use. The Media Allocator

agent indicates to the Presentation Agent that the event is one of type update and must therefore

be in the current EXISTING space of the representation. The Presentation Agent will then

inform the Media Allocator Agent whether the requested size increase can be performed in that

space, using either expansion or overlap. If neither can be done then the Media Allocator Agent

applies the normal parameters changes (colour, highlighting and so on), and does not increase the

size. If there is room for expansion or overlap then the Media Allocator Agent performs these

changes.

Multiple Events Arriving At High Frequency
In a complex process control environment it is normal to expect a large number of signals

arriving at the Process Model. In times of disurbance, often, these signals will cause large number

of events to arrive at the adaptive system. It is crucial, therefore, that the system is designed in

such a way as to handle large numbers of events.

One way to help the system deal with this problem, is to make the systems response time as

quick as possible. To increase speed in the system to help it deal with multiple events, there are

several mechanisms which adhere to system design but reduce lag. Examples of such

mechanisms include

 Within the adaptation system sets of repesentations are passed around. However the

system does not pass around the representation objects themselves, rather references in

the form of meta-information. This use of meta-data ensures more efficient use of

memory and a far quicker system interaction time.

 The Media Allocator Agent buffers and time stamps all incoming requests. In the case of

high numbers of events arriving simulaneously, the requestes are queued in a Vector

(mutable array) and re-ordered based on priority. The Media Allocator Agent services the

 266

highest piority events first. If several events are of the equal priority it deals with the

oldest one first (one that has been waiting longest, based on time stamp).

 The Media Allocator Agent also implements time adaptation, so that any request that has

been unserviced for a pre-set time will have its servicing priority increased, ensuring it

moves up the queue and gets serviced quickly . This priority increase is just for the

purposes of buffering, once the request is being dealt with by the Media Allocator Agent it

utilises its original priority.

 Any Operator Request is dealt with as of being highest priority and is put straight to the top

of the queue, and is therefore deal with first thus ensuring minimum possible delay.

 The Presentation Agent keeps a table of all the current Media Agent Representations being

displayed along with their minimum size parameter information. These tables ensure

quick lookup and minimum delay in selection of the interface allocation.

 In an alarm flood situation the Media Allocator Agent examines the queue size and the

time stamp difference between the earliest and last request. The Media Allocator Agent

may then have a contingency plan to get through the list quicker. This may involve

skipping the expansion schema and just letting windows overlap. This would mean

higher chance of being displayed and quicker system throughput.

 If the queue becomes larger than a second pre-defined limit then the Media Allocator

Agent may require a second strategy. This second strategy is to utilise the representation

of lowest priority on either the best or backup list and find the smallest size

representation. The Media Allocator Agent will then render this representation along

with others of a similar priority. This plan ensures that the information gets to the screen

and the queue size is reduced. So, for instance, pure text might be selected for a

measurement value instead of a large dial representation. This means the pure

information is on-screen available for the operator to examine, but not taking up

valuable interface real estate.

 267

 If the queue of lower level priority representations is too big then the Media Allocator

can take a certain number of them out of the queue and place them into the non-display

queue. The non-display queue is formed out of events whose minimum size representation

cannot fit onto the screen and whose priority is sufficiently low to deem it possible to

wait for screen space to clear up. These events can be listed in a separate window as

being of type waiting so that the operator can see which events are waiting to be serviced

by the Media Allocator Agent. This window can permanently be on screen and be of small

size with scrolling window.

The Number Of Active Agents At One Time
The time response of the system is very important in a critical real-time process control situation.

Therefore there is a trade-off between having many agents, negotiating intensely to provide the

best possible solution, and a smaller yet optimised number of agents which cannot reason as

intensively but are quicker. The solution given here is to utilise a smaller number of agents, with

streamlined negotiation and optimised reasoning.

In our system a distinction is made between active agents, which are agents that work

asynchronously and autonomously (Media Allocator, Rendering Resolution Agents), and passive

agents, which are service provider objects that work synchronously with a client agent

(Presentation Agent). To ensure better performance the number of active agents was limited as a

trade-off for better system performance.

The Number Of Messages To Be Exchanged And Processed Between The

Agents
The greater the number of messages that are processed by the agents (writing, sending, receiving,

opening, reading, reacting), the greater the amount of resources that will be spent on

communication, and the worse will be the time response. The number of messages is linked to

the number of agents, the politics of communication, and the politics of negotiation.

 268

Since there are a limited number of agents, there are a limited the number of messages.

Communication And Negotiation Policies
The nature of the communication/negotiation policies within the agent architecture has an

important affect on the system performance. Choosing the incorrect strategy can lead to

unnecessary overhead and critical delays in system response. The communication policy adopted

has some influence on the negotiation strategy that is utilised, and in critical real-time situations it

is important that the number of inter-agent messages should be kept to a minimum.

Negotiation (especially at the Rendering Resolution Agent level) is important and must be clearly and

carefully structured. A comprehensive, global policy was discarded as a valid strategy as it was

too inflexible, and did not optimise system performance. Instead the type of communication

adopted depended on the position of the agent in the architecture. The agents have an internal

acquaintance model of the other agents with which they interact. To the agent concerned this

acquaintance model is the entire agent system, and the architecture can be decomposed into

groupings of interactions. Thus, the Process Model Agent has a uni-cast, bi-directional

communication policy with the Media Agents, with no negotiation involved (they assess and tag

relevant data and pass it onto the relevant agent). As far as the Process Model Agent is concerned,

the Media Agent is the AMEBICA system. This is the case for most inter-agent communication

strategies. The Media Allocator Agent uses broadcast at certain times to distribute information to

the Media Agents.

The Complexity Of Communication/Negotiation Between Agents.
Besides the time response, a second difficulty lies in the capacity to define, keep control of and

assess the communication/negotiation policies. The more agents involved and the more

complicated the communication policies, the more difficult becomes the management of

complexity.

 269

This is particularly true when there are several agents working and communicating in parallel.

Non-determinism becomes a key issue.

Synchronisation is complex. Moreover, synchronization is bad for time response (it is heavier on

CPU resources). Therefore, synchronization is only used when necessary (that is between

reasoning agents). Otherwise all other agents communicate and negotiate asynchronously.

Conclusion
This chapter has given a detailed look at the mechanisms behind the key reasoning agents that

orchestrate adaptation. An in-depth look has been taken at the internal architecture of the Media

Agent, and how it utilises streams to render its representations. Additionally, the Presentation

Agent has been explained with reference to how it maintains a current view of interface usage,

how it deduces appropriate Representation Spaces and how it interacts with other key reasoning

agents.

An examination was made of the Media Allocator Agent, and how it apportions space for

representations. A detailed study was carried out on how the Media Allocator Agent determines

whether it needs to expand or overlap Representation Spaces. If the Media Allocator Agent

cannot allocate, or adjust the interface to contain an incoming representation, then it has several

strategies for ensuring the representation gets processed, prime of which is a queuing mechanism.

The Media Allocator Agent has the ability to place associated representations together, using the

Satellite/Source relationship. At design time one representation is defined as being a source, and

associated representations are defined as being satellite. The Media Allocator Agent dynamically

on the fly attempts to configure the interface so that satellites are placed in set positions with

respect to their source. These pre-set position constraints are defined within each representation.

For large representations (electricity network grid for instance) that are composed of smaller

rendering objects (sub-stations for instance), an important aspect of adaptation is the zoom

 270

factor and location of the visible window on the larger representation. To deal with this the

Media Allocator uses a parent/child strategy (where the larger representation is the parent, and the

sub-parts are children). Utilising the priority of the children, the Media Allocator Agent

dynamically determines the best zoom factor and the location of the visible window.

This chapter has examined how the adaptive framework implements a rudimentary form of

consistency checking, and how it deals with user driven changes at the interface. It has also

presented a mechanism for implementing time-led adaptation.

Lastly, it has dealt with important conditions that the system must deal with to be successful.

These conditions include the system receiving high frequencies of events, the number of active

agents and communication/negotiation problems.

The next chapter looks at the experimental results of the implemented system, and how

successful it was at fulfilling its goal.

 271

C h a p t e r 1 0

EXPERIMENTAL STUDY: THE USE OF THE ADAPTIVE
PRESENTATION SYSTEM WITHIN THE DOMAIN OF

ELECTRICITY NETWORK MANAGEMENT

The Final AMEBICA System
A complete prototype adaptive system was constructed according to the principles outlined in

Chapters 8 and 9 using a multi-agent approach. AMEBICA is a complex system and the design

and development work was spread over a number of contributors. Figure 46 below shows the

Figure 46 Adaptive System Prototype Contributions

Process Model Agent Media Agent

HCI Rules
Media Allocator
Agent

Operator Agent

Rendering Resolution
Agent

Presentation Agent

 272

final form of the system and indicates the contribution of the author.

In order to make clear the contribution of the author, Table 11 and Figure 46 show the parts of

the system designed by the author in GREEN, the parts built and designed by the author are in

BLUE and other contributions (build/test/detailed implementations) are in RED. Thus the

overall contribution of the author is as follows

Component Overall Design Detailed Design Constructed
and Tested

Process Model
Agent

Concept and overall design

by author

Detailed design carried

out by Softeco

Constructed

and tested by

Softeco

Media Agent Concept, overall design and

internal architecture by

author

Detailed design by

Alcatel

Constructed

and tested by

Alcatel

Rendering
Resolution Agent

Concept, overall design and

internal architecture by

author

Detailed design by

author

Constructed

and tested by

author

Operator Agent Concept, overall design by

author

Detailed design by IFE Constructed

and tested by

IFE

Human Factors Concept, overall design by Detailed design by Constructed

and tested by

 273

Rules Database author author IFE

Media Allocator
Agent

Concept, overall design and

internal architecture by

author

Detailed design by

author

Constructed

and tested by

author

Presentation
Agent

Concept, overall design and

internal architecture by

author

Detailed implementation

by LGI2P

Constructed

and tested by

LGI2P

Overall Design of
Architecture

Concepts, and overall design

by author

Detailed design by

author

Not applicable

Evaluation of
Prototype

Contribution by Author to

Evaluation Discussions

Detailed Evaluation by

ELSAG personnel

All tests carried

out by ELSAG

Table 11 AMEBICA Prototype Contributions

It should be noted that the author designed the agent architecture and the roles and interactions

between these agents. The author was also responsible for the adaptation principles adopted,

and system concepts such as generality and streaming as well as the detailed design and

implementation of the core reasoning agents, the Media Allocator Agent and the Rendering Resolution

Agent. Finally, the author designed the internal architectures for the Media and Presentation

agents. The partners listed in Table 11 carried out the detailed design and coding of the Media

and Presentation Agents.

Once built, the system was evaluated within two exemplars – a Thermal power Plant in Spain,

and an Electrical Supply Network in Italy. The author contributed to the design and evaluation

strategy for both these exemplars but was unable to take part in the evaluation process itself

because this was restricted to domain personnel. Only the results of the evaluation of the

 274

Electrical Supply Network (ESN) are given in the thesis. Most of the actual evaluation work was

carried out by personnel at Elsag (Designers, Engineers, Operators). The evaluation results

described below, show that the system did work, and received qualified approval.

Brief Description Of The Electrical Network Management

Exemplar
In the Electricity Network Management (ENM) process, an electricity network diagram is

displayed upon the screen with the following information:

 Electricity substations, which may assume different shapes and colours depending on

network status and any substation problems.

 Electricity equipment, which may assume different shapes and colours dependent on

network status and any equipment problems.

 Electric connections between equipment.

 Status and measurement information: connectivity status, alarms, voltage, current and

power, etc.

Such a network diagram is normally very large and only a very limited area can be displayed on

the screen at any one time. This narrow bandwidth view of the network diagram can lead to

operator error and usually some additional interface tasks. Suppose, for example, that at a certain

tim e the netw ork is in a ―steady norm al state‖ an d the op erator is w orkin g on som e ro utine task.

Suddenly there is a network disturbance, and some equipment within the network changes its

status (i.e. a tripped protection relay opens an electric breaker that was previously closed). In this

situation the operator is expected to immediately pan and zoom the network diagram to the

appropriate location in order to try and verify what has happened and why. Additionally, the

operator may need to open a detail window that shows the composition of the specific

equipment in question.

 275

It is possible that whilst the operator is analysing this information, another piece of equipment on

the network changes its status. The operator may then assimilate this new information so that the

problem can be properly analysed. Since it is possible (even probable) that the two events are

related, the operator will need to examine both sets of equipment simultaneously. To examine the

status of both equipment faults the operator will need to pan and zoom the mimic board (the

display is called a mimic board although technically it is a screen diagram) once again. A second

detailed window will also need to be opened containing lower level detail information concerning

the new alarm component.

Most modern graphical interfaces will open these new detail windows in a default screen location.

T h e operator m ust then m o ve the w in do w an d ―p lace‖ it w here it does no t o verlap im portant

information on the background mimic. Additionally, depending on its location, the operator may

be required to resize the window as well. Spatial adaptation was therefore considered to be an

important part of the ENM application.

The ENM Scenario
The scenario developed to test the adaptive system describes the effects on the electrical network

of an electric storm passing over a series of substations causing progressive outages. The operator

needs to execute repetitive and tedious actions in order to understand the nature of the problem.

The adaptive system was intended to relieve the operators of these actions and allows them to

co ncen trate on m ore ―effective‖ prob lem so lvin g.

Basic requirements
Network In Disturbed State

When an electrical network is in a seriously disturbed state, the system often generates alarms at a

rate too high for operators to acknowledge. This often results in the risk that important alarms

may not be noticed in time. Therefore, dynamically filtering events in such critical conditions,

 276

highlighting the most important ones, and spatially reorganizing the display to bring related

events together, can provide vital assistance to the operator.

Alarms Handling

When several alarms are active at the same time but have not been acknowledged, it is often the

case that the complete set is not automatically shown on the screen, and therefore the operator

has to manipulate the display. When this happens, typically, some important alarms may not be

registered by the operator.. The adaptive system addresses this problem by exploiting

presentation techniques that can accommodate larger numbers of alarms or by presenting less

information on each alarm, e.g. small titles that can be expanded to provide the full alarm

information if needed. As a result:

 The operator should be able to separate out major and minor alarm types. A major alarm

type is displayed in a certain manner requiring immediate attention. A minor alarm type

can be accentuated to enhance presentation but are normally deleted upon

acknowledgement.

 The system can highlight every alarm condition using a combination of colour, intensity,

inverse video, and blinking.

 The system provides the means for displaying an indication of the presence of

unacknowledged alarms.

Comparisons with the Original System
Faulted Area Identification

On a standard interface during an alarm situation the operator has to locate the alarmed area as

quickly and precisely as possible. In the present system this is done by double-clicking on the

alarm itself. The system then automatically translates the network diagram so that it is centred

round the alarmed element. The zoom level chosen is standard, and this can leave out important,

related information.

 277

The adaptive system, in contrast, automatically adapts the level of zooming for the diagram, so as

to include, for instance, all other related alarms (geographically, topologically or chronologically)

or connected elements. However, at some level the distribution of alarms reaches a complexity

where an alternative has to be found - for instance an overview with rectangles/frames that can

be taken up separately to view the alarms within the frame.

High Flow Of Alarms (Avalanche)

When the electrical network is in a disturbed state the alarms are generated by the system at a rate

too high for the operators to keep up with: and the risk that important alarms are not noticed in

time is increased. The adaptive system dynamically filters the alarm events in such critical

conditions, or at least attempts to highlight the more important ones. For example if too many

alarms are generated within a certain time-frame, instead of scrolling them at an unreadable speed

in the alarm window, the system shows only the higher priority ones, making it clear it is doing so

and that there are other alarms that remain to be seen.

“U n serviced ” A larm s

When alarms arrive, the operator can acknowledge them either individually or collectively. It is

often the case that during times of disturbance the operator acknowledges the alarms collectively

in an effort to speed the process up. An inherent problem with this method is the frequency

with which oversights occur. The adaptive system tries to alleviate this problem by accentuating

the presentation of unserviced alarms. It does this by noting how long an alarm has remained

unserviced, and, based upon its priority level, presents the alarm again for acknowledgement or

makes it more conspicuous.

Mimic Handling Support

The adaptive system adjusts the presentation of information on the mimic diagram by:

 Highlighting selected alarms on the basis of their status and the alarm time evolution.

 278

 Spatial reorganization of the display in order to keep in the same visual frame the

maximum number of the more recent alarms In this way the operator can see important

alarms at a glance

 Track the alarms movement by panning, zooming, resizing so that the operator can easily

follow the time – geographic evolution of the network state/alarms

 Resizing of alarm windows

The ENM Scenario Implementation Details
The ENM scenario that was implemented for the prototype acted as a simulation, since the

prototype could not be attached to a real process. Therefore, a process simulator was

constructed which emulated the scenarios described (moving storm for instance) and the

prototype reacted to the process simulator as it would to a real process.

Alarm Management:

The following functions are implemented:

 Alarm acknowledgement

 Alarm Pages

 Display of information related to the network status (moving storm in the case under

examination)

 Level of priority of each alarm

Scheme Management
The following functions are implemented:

 Management of

 Substation alarms

 279

 Alarm acquisition

 Zoom in/out and cantering of alarmed station with continuous panning

 Smart opening of detailed schemes (windows embedded)

 Smart spatial reorganization to avoid any hiding of critical information

 Smart windows resizing

The ENM Scenario – Moving Storm
The figures that follow are actual screen displays of the tracking and spatial reorganization carried

out by the prototype following the ENM scenario driven by a simulator.

Stage 1: Disturbance In Substation H
Figure 47 shows the effect of a disturbance in substation H. The system has automatically chosen

to display the substation with the maximum attainable level of detail, because it is the only

substation in alarm. The station is coloured in red to highlight the appropriate substation on the

mimic board.

 280

Figure 47 Alarmed substation

Stage 2: Substation H With Detail Window

Figure 48 shows that that the system has now opened a detailed scheme of the substation in a

separate window (linked to the synthetic source representation using a blue bar).

 281

Figure 48 Substation H with detailed window

Stage 3: Disturbance In Substation B
Now a critical alarm appears at substation B (Figure 49). The background Mimic board, is

panned and zoomed to the appropriate level of granularity to encompass both substation B and

substation H. A detail window for substation B is created and the adaptive system places both

detail windows in appropriate locations, and endeavours not to cover important information.

The level of the alarm is shown in the alarm list window, by the font and the colour of the

relevant row. If the operator does not acknowledge the alarm within a certain period of time, it

will change colour to alert the operator to this fact, and a vocal warning is given if the audio

channel is free.

 282

Figure 49 Critical alarm in B, not acknowledged

Stage 4: Unacknowledged Alarm State
After some time (about a few seconds) the level of alarm importance increases since the operator

has not acknowledged it. It is displayed within the alarm list window with a different (larger) font

in a different colour (Figure 50). Within the small mimic window a yellow line square is created to

show the alarmed zone.

 283

Figure 50 Critical Alarm not acknowledged

Stage 5: Alarm Acknowledgement
Figure 51 shows the critical alarm has been acknowledged and the detail windows disappears, the

font is changed to a normal condition.

 284

Figure 51 Critical alarm acknowledged

Stage 6: Use Of Alternative Representation
Figure 52 shows the use of the WEB cam. A critical alarm becomes active within substation H.

T h e system op en s a ―live‖ w indo w to increase the consciousness of the operator and to provide

th em w ith furth er ―live‖ details of w hat visually is h appen in g at Substation H .

 285

Figure 52 WEB cam utilisation

Stage 7: Spatial Management Of The Interface
Figure 53 and Figure 54 show the use of spatial management (1&2). These two displays show

how AMEBICA works to best utilise the available screen real estate; it resizes the detailed

windows to make it possible to display a complete view of the alarms, windows, and schemes

without hiding any alarmed substation.

 286

Figure 53 Space layout management (1)

 287

Figure 54 Space layout management (2)

Stage 8: Adaptation After User Induced View Change
Figure 55 is quite similar to the previous one, but the alarm window has been downsized to avoid

any overlapping with the alarmed substation in the upper left corner.

 288

Figure 55 Resizable alarm windows

The Adaptation Matrix
The adaptation matrix shown in Table 12 has been specifically prepared for the evaluation for the

―m o vin g sto rm ‖ scen ario A n adap tation m atrix w as developed for the evaluation in order to

define in a clear and concise format the performance of the operator and of AMEBICA during

th e different scen ario s. F o r each cell tw o description s are given ; the first in ―norm al‖ font

represents the status of the operator,

 289

the second one, in ―italics‖ font, represents th e goal o f A M E B IC A , i.e. the p urp ose and the

direction of specific compensating functions that are activated.

Table 12 ENM Adaptation Matrix.

This adaptation matrix highlights the AMEBICA behaviour as a function of the process status

and the operator actions.

Actual Alarm Acquisition Sequences
The following matrices show how alarms are handled within cells in the adjacency matrix. The

3x3 cell in each element of the matrix shows how a current alarm (either in a Waiting state(W),

OPERATOR RESPONSE PROCESS STATUS NORMAL STATE DISTURBED STATE HIGHLY DISTURBED STATE

1 Correct Operation

Checks the status of the network and monitors the
measurements

Operator acknowledge the
alarms

Operator acknowledge the alarms

Accentuation of the faulted area, display
reorganization to show other alarms No Action Moves the diagram to centre

around the alarm location

2 Delayed

Not applicable Operator does not
acknowledge

Operator does not acknowledge the alarms
because he is not attentive

Not applicable Display of information is
accentuated in order to draw
the operator attention

AMEBICA modulates the acoustic alarm
in order to distract the operator

3 No control Response

Not applicable Operator acknowledges some
information , but the
disturbed status still persists

Operator does not succeed in restoring the
“norm al” situation

Not applicable AMEBICA highlights alarm
presentation on the small
mimic and opens windows
with alarms

AMEBICA highlights the zone affected by
the last alarms looking for including the
as may alarms as possible

4 Erratic

The operator is looking at network diagrams and
opens and closes different diagrams in random
section

Operator does not acknowledge
or acknowledges some
information , but the disturbed
status still persists

Operator does not acknowledge or
acknowledges some information , but the
disturbed status still persists

No action AMEBICA accentuates alarm
presentation

AMEBICA accentuates alarm
presentation and continues to looking for
including as may alarms as possible

5 Disorganized

The operator is looking at network diagrams and
opens and closes different diagrams in random
section

Operator does not acknowledge
or acknowledges some
information , but the disturbed
status still persists

Operator does not acknowledge or
acknowledges some information , but the
disturbed status still persists

No action AMEBICA accentuates alarm
presentation

AMEBICA accentuates alarm
presentation and continues to looking for
including as may alarms as possible

 290

having high importance level (H), or a very important level (V)) is handled when the previous

alarm was in one of a similar set of states. The numbers shown in the cells refer to the actions

taken by AMEBICA and are listed below each adaptation matrix.

Matrix 1: Alarm Acquisition

 Process status
Operator response Normal Very disturbed

High information rate

Disturbed

Low information rate
Normal
The Operator acquires
the alarms

No action No action No action

Delayed
The Operator do esn‘t
acquire the alarm, but
they are working on
previous alarms that
have major or equal
importance

 Previous Previous Previous
W H V W H V W H V

Current W - - - Current W - - - Current W - - -

H 1 1 H - - H 1 -

V 2 V 8 V 2

Erratic
T h e O perato r do esn‘t
acquire the alarm, but
they are working on
previous alarms that
have minor importance

 Previous Previous Previous
W H V W H V W H V

Current Current

 Current

H 3 H 3 H 3

V 4 4 V 2 2 V 4 4

Disorganized
T h e O perato r do esn‘t
acquire the alarm and is
not working or is
working on non
alarmed elements

Current W 5 Current W 5 Current W 5
H 6 H 9 H 6
V 7 V 7 V 7

Table 13 ENM Alarm Acquisition Matrix

ACTIONS BY AMEBICA (TABLE 13)
1. After a while, the Event to be acknowledged is shown in the alarm list window where

only the important alarms are listed

 291

2. After a while, the Event to be acknowledged is shown in the alarm list window, the

audible console alarm is activated and only the very important alarms are listed

3. After a while, the Event to be acknowledged is shown in the alarm list window, the

audible console alarm is activated and only the important alarms are listed

4. After a while, the Event to be acknowledged is shown in the alarm list window, the

audible console alarm is activated and only the important and very important alarms are listed

5. After a while, the Event to be acknowledged is shown in the alarm list window and all

alarms are listed

6. After a while, the Event to be acknowledged is shown in the alarm list window, the

audible console alarm is activated and only the warning and important alarms are listed

7. After a while, the Event to be acknowledged is shown in the alarm list window, the

audible console alarm is activated, the diagram is zoomed and centred in order to include all

important and very important alarmed elements and the equipment diagrams relating to them

8. After a while, the Event to be acknowledge is shown in the alarm list window, and only

the very important alarms are listed

9. After a while, the Event to be acknowledged is shown in the alarm list window, the

console audible alarm is activated, the diagram is zoomed and centred in order to include all

important alarmed elements and the equipment diagrams related to them.

 292

Matrix 2: Alarm Handling
 Process status
Operator response Normal Very disturbed

High information rate

Disturbed

Low information
rate

Normal
The Operator makes
controls on the alarmed
element

No action No action No action

Delayed
After alarm acquisition,
The Operator makes
works on elements
related to the most
important alarms

 Previous Previous Previous
W H V W H V W H V

Current W - - - C
ur
re
nt

W - - - C
u
r
r
e
n
t

W - - -

H - - H - - H - -

V 1 V 1 V 1

Erratic
After alarm acquisition,
The Operator works on
elements related to
alarms of minor
importance

 Previous Previous Previous
W H V W H V W H V

Current C
u
rr
e
nt

 C
u
r
r
e
n
t

H 2 H 2 H 2

V 3 3 V 3 3 V 3 3

Disorganized
After alarm acquisition,
the Operator is working
or not working on non-
alarmed elements

Current W 4 C
ur
re
nt

W 4 C
u
r
r
e
n
t

W 4
H 5 H 7 H 7
V 6 V 6 V 6

Table 14 ENM Alarm Handling Matrix

 293

ACTIONS BY AMEBICA (TABLE 14)
1. After a while, the Off normal list page is shown and only the very important alarms

on which the Operator has not accessed are listed

2. After a while, the Off normal list page is shown, the audible console alarm is

activated and only the important alarms which the Operator has not accessed are listed

3. After a while, the Off normal list page is shown, the audible console alarm is

activated and only the very important alarms and the important alarms which the Operator

has not accessed are listed

4. After a while, the Off normal list page is shown, the audible console alarm is

activated and all the alarms which the Operator has not accessed are listed

5. After a while, the Off normal list page is shown, the audible console alarm is

activated and only the important alarms and the warning alarms which the Operator has not

accessed are listed

6. After a while, the off normal list page is shown with all unserviced alarms, the audible

console alarm is activated. The diagram is zoomed and centred in order to include all

important and very important alarmed elements and their related diagrams

7. After a while, the Off normal list page is shown with all the unserviced alarms, the

audible console alarm is activated, the diagram is zoomed and centred in order to include all

important alarmed elements and related diagrams.

 294

Matrix 3: Unsupplied Grid Areas

 Process status
Operator response Normal Very disturbed

High information
rate

Disturbed

Low information
rate

Normal
There are no unsupplied
areas

No action No action No action

Delayed
There are some
unsupplied areas, but the
Operator is working on
other network elements

1 No action No action

Erratic
The Operator is working
on low priority areas, in
the meantime important
or very important areas
are unsupplied.

2 No action 2

Disorganized
The Operator is not
working but there are
some not unsupplied
areas

3 No action No action

Table 15 ENM Unsupplied Grid Areas Matrix

ACTIONS BY AMEBICA (TABLE 15)
1. After a while, the Off normal list page is shown and only alarms related to important

unsupplied areas are shown

2. After a while, the Off normal list page is shown, the audible console alarm is

activated, and only alarms related to important unsupplied areas are shown

 295

3. After a while, the Off normal list page is shown with the alarms related to important

unsupplied areas, the audible console alarm is activated and the diagram is zoomed and

centred in order to include all important unsupplied areas.

The Usability Results
Who Evaluated The ENM Prototype
 N etw ork op erators and Sh ift superviso rs b elon gin g to on e of th e ―im portan t‖ E n d U ser

(ENEL) and by GRS system experts and consultants of Elsag and Softeco/Sismat carried out the

evaluation.

T h e users w ere organ ized into an ―expert team ‖ (Table 16) whose purpose it was to give an

expert evaluation on the prototype and talk through.

 296

Table 16 Expert Evaluators

The evaluation group were shown the prototype version and were demonstrated the deemed

advantages that might be derived from its use. After a short training period, the evaluation group

discussed the prototype and were interviewed to discover their impressions.

Overview Of Evaluation Techniques
The evaluation techniques are described below:

Company Name Yrs of experience Main activity

Softeco Gianni Viano 15 Design of MMI systems and general R&D

Softeco Marco Dongu 1 Research and design of MMI systems

Softeco Ugo Moretto 20 Development of automation plants

Company Name Yrs of experience Main activity

Elsag Alessandra Rognone 9 Design and implementation of MMI for SCADA

Elsag Daniele Biglino 20 Design of control system for electrical networks

Elsag Enrico Appiani 13 Design of distributed architecture for automation systems

Elsag Lauro Mantoani 15 Design of control system for electrical networks

Elsag Marco Corvi 6 Computer vision and Image processing

Elsag Marina Rossi 15 Design and implementation of MMI for SCADA

Elsag Paolo Frugone 10 Design and implementation of control system for power
plants and electrical networks

Elsag Riccardo Moretto 17 Design of MMI and interactive HELP interfaces

Company Name Position
ENEL Bargelli Manager of network maintenance services

ENEL Del Caprio Manager of SCADA system

ENEL Massimo Marangoni Shift head of the control centre

ENEL Broccardo Manager of MV network management

 297

Expert Evaluation
This technique employs a diagnostic approach that uses process experts and Man-Machine

experts to identify design errors or likely user problems. This method is cost-efficient and

provides useful feedback.

Observational Evaluation
This technique involves the direct observation, or indirect monitoring by video cameras, software

logging systems etc, of user behaviour at the interface. Much useful data can be collected in this

way.

Survey Evaluation
T h is techn ique in vo lves th e form al co llection o f data abo ut the op erator‘s subjective impressions

of the interface using interviews and/or questionnaires. Data is comparatively easy to collect, and

efficient analysis can be carried out.

Talk Through
O ne o f th e m o st pop ular usab ility testin g techn iques is th e ―talk thro ugh ‖. H ere test subjects are

en co uraged to ―talk thro ugh ‖ as th ey are perform in g a task. T he key po int o f th is m ethod lies in

its ability to show what users do and why whilst they are doing it, as opposed to discussing later

how they remembered they did it and why.

Usability Evaluation Methodology
The Usability evaluation of the AMEBICA prototype has been based on the scenarios described

earlier in the chapter and employed to verify that the approach is consistent with the application.

E lsag‘s an d So fteco‘s experts performed part of the evaluation. The quality of the results

achieved in this way is reasonable since the Elsag/Softeco experts have many years of field

experience in the field of Network Management.

 298

They have been involved in the specification, design and testing of MMIs for more than 20 years

and have spent many months with real MMI operations in both Italy and abroad. Every effort

was made to avoid any potential bias of their judgments. The ENM evaluation plan covered:

 Usability (the extent to which the system was used by specified users in achieving specific

goals)

 Effectiveness (the ability of users to complete tasks using the system, and the quality of

the output of those tasks)

 Efficiency (the level of resource consumed in performing tasks)

 Satisfaction (users subjective reactions to using the system)

 Ease of learning (the easiness with which subjects understood the concept and the

operations of the AMEBICA console and how easy it was for them to remember its

operating procedures)

 Error rate (the number of errors that arose from to the subject during a working session,

defined in terms of time and the number of test cases)

 Quality of the system (the extent to which specified goals were achieved in terms of

effectiveness, efficiency and satisfaction)

Actual procedures
The following evaluation techniques were employed informally:

Focus group: composed of experts from the GRS development team of GRS, the AMEBICA

development team and End User operators.

Talk through: carried out by two/three experts on a group of people of around ten.

The end-users were questioned on:

 299

 Their opinions on AMEBICA capabilities to help the operator fulfil their task

 Their understanding of what AMEBICA is doing

 T h eir op in ion abo ut A M E B IC A ‘s capab ility in m akin g it faster an d easier to navigate

through the displays

 How efficiently they dealt with alarms

 Which improvements they felt AMEBICA offered with respect to traditional Human

Interface systems.

Table 17 lists the expert participants and their experience:

 300

Table 17 ENM Expert Participants

Company Name Yrs of
experience Main activity

Softeco Gianni Viano 15 Design of MMI systems and general R&D

Softeco Marco
Dongu 1 Research and design of MMI systems

Softeco Ugo Moretto 20 Development of automation plants

Company Name Yrs of
experience Main activity

Elsag Alessandra
Rognone 9 Design and implementation of MMI for SCADA

Elsag Daniele
Biglino 20 Design of control system for electrical networks

Elsag Enrico
Appiani 13 Design of distributed architecture for automation

systems

Elsag Lauro
Mantoani 15 Design of control system for electrical networks

Elsag Marco Corvi 6 Computer vision and Image processing

Elsag Marina Rossi 15 Design and implementation of MMI for SCADA

Elsag Paolo
Frugone 10 Design and implementation of control system for power

plants and electrical networks

Elsag Riccardo
Moretto 17 Design of MMI and interactive HELP interfaces

Company Name Position

ENEL Bargelli Manager of network maintenance services

ENEL Del Caprio Manager of SCADA system

ENEL Massimo
Marangoni

Shift head of the control centre

ENEL Broccardo Manager of MV network management

 301

Use Cases
Preparation of use cases was crucial for an effective evaluation of the adaptive system. They were

derived from a comprehensive analysis of the system targets and experience gained during

development. They were also derived in part from in depth discussions with the GRS developers

and, in some cases from the feedback of field operators currently using GRS for EMS and DMS

functions. Use cases are used to:

 Evaluate the overall usability of the system as well as its effectiveness, efficiency and the

subjective opinion of the operator.

 Verify the performance of AMEBICA dependent on the perceived behaviour of the

operator.

 302

Usability Evaluation
Usability Criteria

Table 18 illustrates the criteria used for usability testing:

Table 18 Criteria for evaluation of the prototype

Criteria Method Measure Recording format

1. Information
presentation

Guidelines/ check
lists
Observation
Interview

Score on check lists
Score on pre-specified
observation notes
Score on interview
engine

Cross marks
Notes

2. Performance Talk through
Expert judgment
Interview

Percentage of goals
successfully achieved/
successfully completed
tasks Score on
interview engine

Audio-recording
Cross marks

Notes

3. Error rate Expert judgment
Observation

Number of errors
committed

Cross marks
Notes

4. Situation
awareness

Interview
Expert judgment

Score on SA questions Cross marks
Notes

5. Mental
workload

Interview
Observation

Score on workload
questions

Notes
Cross marks
Notes

6. Feeling of
control

Interview Score on control
questions

Cross marks

7. Satisfaction Interview Score on satisfaction
questions

Cross marks

 303

 Responsible Personnel to take part in
test/evaluation

Time to conduct test
(app.)

Focus group End users Design Group 1-3 hours

Developing
scenarios

End users Process experts

Talk through End user or human
factors

End users (operator) 2 – 3 hours

Observation End user or human
factors

End users, Process experts,
human factors

2- 3 hours

Interviews End user or human
factors

End users, design team 3 hours

Check list End user or human
factors

System designer, human
factors

4 hours

Analysis &
documentation

End user or human
factors

End users, design team,
human factors

4 weeks

Table 19 Estimated resources for various parts of the evaluation

Test plan
The evaluation tests were carried out in two sessions:

Session A held in Genoa with Elsag and ENEL.

Session B held in Milan with CESI (ENEL)

 304

The session were mainly based on the moving storm case and included vocal input /output

capabilities

Each session included:

 Organization of the personnel into focus groups

 Training on AMEBICA

 Explanation of the target to be reached

 Explanation how interview will be conducted

 Presentation of the evaluation section

 Interviews and talk through

 Comparison of information

 Debriefing

 Analysis of data

 Interviews were based on scores; where YES/NO questions were used to test very

specific and objective questions such as:

 Is the colour right?

 Is the size right?

Results Of The Workshops
Quantitative results
Genoa Workshop

This section reports on some of the results (Table 20) derived from the forms filled by the

participants to the two workshops held in Genoa in Elsag and in ENEL respectively. The full set

of results can be found in Appendix C.

 305

Interviews
(1)Very Bad – very good (2) False – True (3) No – Yes (4) Very little– A lot (5) Very difficult – very easy (6) Little – Much
(7) Bad – good

Question 1 2 3 4 5 6 M Comments
Part 1 4.9
Display of information 5.2

Which is your overal impression of
the system? (1) 5 3 4 6 7 5

 Idea is good, but
excessive automation should
be avoided

Do you think the system provides
information about the process state
in a good way? (2)

6 5 5 6 7 5.8 A n ―op erator guide‖
should be available

Does too much information exist in
the display? (2) 5 6 3 3 4 4.2

 Information amount
should depend on the process
and adapt to it

Do you find the way of presenting
the information logical? (3) 5 6 4 5 7 5.4 Generally yes

Is it easy to prevent errors? (5) 4 2 - 4 - 3.3
Efficiency 5.5
Does the system provide you with a
good overview of the process? (6) 4 3 6 5 7 5 Not enough information

to give an assessment
Is the Interface Pleasing to Use 4.9
Do you like the way information is
presented? (6) 5 3 6 7 5 5.2 Not enough information

to give an assessment
Do you feel in control of the
system? (6) 4 4 - 6 - 4.7 Not enough information

to give an assessment
Part 2 5.2
Alarms 5.2
How easy is it to diagnose faults by
using alarms? (3) 5 5 6 6 6 5.6

Is the alarm system making you
attentive when deviations occurs in
the system? (3)

5 5 6 7 6 5.8

Are the alarms presented consistent
with other information on the
screens? (7)

5 3 6 6 6 5.2

How do you evaluate presentation of
alarms? (3) 3 2 6 6 6 4.6

 306

Are the alarms organised so that
natural relationships between alarms
are shown? (3)

- 6 7 7 6 6.5

Do you believe that multimedia
provides good support fro the
network control? (3)

- 6 7 7 6 6.5 Some people believe its too
expensive

Table 20 Workshop Results

The Evaluation Checklist

1 = never 2 = sometimes 3= almost always 4 = always

Table 21 Evaluation Checklist

Question 1 2 3 4 5 6 M Comments
Section 1: Clarity of the representation 3.1
1. Is important information highlighted on

the screen? - 3 3 3 - 3

2. Does information appear to be
organized logically on the screen? 3 3 3 3 - 3

7. Does the screen appear uncluttered? - - 3 4 3 3.3
9. Is it easy to find the required
information on a screen? 3 2 3 4 - 3

Section 2 Functionality 3.2
2. Does each screen contain all the
information that the evaluator feels is
relevant to the task?

3 3 3 4 4 3.4

6. Does the system help the evaluator to
understand the state of the process? 4 3 - 4 4 3.8

8. Does the nature of adaptation ensure
that the evaluator is warned of a process
disturbance in time?

4 3 3 3 2 3

9. Are the adaptation strategies
consequent? 4 3 3 3 2 3

10. Is the media chosen for adaptation
appropriate? 4 3 3 4 3 3.4

 307

Question 1 2 3 4 5 6 M Comments
14. Does the system ensure that important
information is presented for the evaluator
at appropriate times?

3 2 2 4 - 2.8

Section 3: Alarms and error messages 3.1
1. Does the system clearly warn the
evaluator about a disturbance or a
deviation from a normal situation?

3 2 3 4 4 3.2

2. Is the alarm of such a nature that it
interrupts the evaluator from what he is
doing?

2 3 1 3 4 2.6

Section 4: Information Feedback 3
1. Are instructions and messages displayed
by the system concise and positive? 4 4 4 4 - 4

4. Is it clear what actions the user can take
at any stage? 3 2 3 3 - 2.8

10. Do alarm messages inform the
evaluator about the priority and nature of
the deviation?

3 1 4 4 - 3

11. Do alarm messages guide the
evaluators‘ in itial action s? 2 1 3 3 - 2.3

Section 5: Consistency 3
3. Are icons, symbols, graphical
representations and other pictorial
information used consistently throughout
the system?

3 3 3 4 - 3.3

8. Is the method of selecting options
consistent throughout the system? - 2 2 4 - 2.7

Section 6: Compatibility 3
7. Does the organization and structure of
th e system fit th e user‘s p erception of the
task?

3 2 2 4 4 3

8. Does the sequence of activities required
to complete a task follow what the user
would expect?

3 2 - 4 - 3

10. Does the system support the evaluator
so that the probability of conducting errors
is minimized?

3 3 2 3 3 2.8

Question 1 2 3 4 5 6 M Comments
Section 7: Usability problems 2.8
1. Working out how to use the system 3 2 3 4 3 3

 308

Question 1 2 3 4 5 6 M Comments
2. Understanding how to carry out the
tasks 3 1 3 4 3 2.8

4. Finding the information you want 2 1 2 4 3 2.4
5. Too many colours on the screen 3 2 3 4 3 3
6. An inflexible, rigid system structure 3 2 3 4 3 3
10. Unexpected actions by the system 3 2 3 3 3 2.8
11. An input device which is difficult or
awkward to use 3 3 3 4 3 3.2

8. Having to remember too much
information while carrying out a task 2 1 3 4 1 2.2

 309

1 = Very unsatisfactory 2 = fairly unsatisfactory 3 = neutral
4 = fairly satisfactory 5 = very satisfactory

Questions 1 2 3 4 5 6 M Comments
Section 1: Clarity of the representation
How do you assess the system?? 4 4 - 5 4 4.3
Section 2: Functionality
How do you appraise the system in terms of
functionality 5 4 - 5 4 4.5

Section 3: Alarms and error messages
How do you estimate the system in terms of
alarm and messages presentation? 4 3 - 5 4 4

Section 4: Feedback
How do you assess the system in terms of
feedback 4 2 - 5 - 3.7

Section 5: Consistency
How do you assess the system in terms of
consistency? 4 3 - 5 - 4

Section 6: Compatibility
Which is the level of compatibility of the
system? 5 4 - 5 4 4.5

Section 7: Usability problems
How do you evaluate the system usability? - - - - - -

Average = 4.2
Table 22 Evaluation Conclusions

General questions
Questions Replies

Which are the best aspects of
the system?

 The capability to exploit multimedia to display information
 Use of vocal commands can be of some help.
 The possibility to focus on the solution of a problem without

worrying to look for the specific information.
 The capability to interact simultaneously via manual and vocal

input
 The optimal spatial reorganization of the display
 Graphic interface and autoadaptivity
 Alarm priority pointed out by colours

 310

Which are the worst aspects of
the system?

 Difficult to say without an actual AMEBICA console
 Iconic presentation of the alarms might be useful (instead of

alarm lists)
 Maybe the excessive level of intrusion of the system
 Colour assignment might be changed

Which improvement do you
suggest?

 Multimedia features might be confusing for some operators
 Som e op erators don‘t w ant an excessive reduction o f

information. Experienced operator may wish to have al the
information at a glance (especially in some instances: relay
protection for instance).

 Auto adaptivity should be customisable for each operator

What do you like to add?
 All functionalities are enough covered
 Include a Context sensitive HELP function.
 Capability to export information to field maintenance crews

Table 23 ENM Workshop General Questions

ENEL General questions
Question Replies

Which are the best aspects of
the system?

 Immediacy of alarms
 Multimedia as complement to auto adaptivity to support

operator
 Operator guide

Which are the worst aspects of
the system?

 No tool to include different procedure (on line)???
 Too much information in relation to the workload
 Sometime difficult to understand

Which improvement do you
suggest?

 Selective filtering of information
 Try to simplify the operating procedures
 Reduce effects
 Operator customisable
 Improved readability

What do you like to add?

 On line configuration of the AT network
 Possibility to trace the execution of standard ENEL command

procedures (for example load transfer)
 Check of default operations

Table 24 ENEL General Questions

 311

Qualitative results
Workshop in Elsag
Presentation Of Workshop Requirements

The following comments were made:

 Vocal input helps to have different activities performed in parallel

 Volume increase is not welcomed

Presentation Of The Moving Storm Scenario

The following comments were derived:

 The system must not be intrusive

 No consensus on the automatic cantering and zooming (some people like to give more

freedom to the operator. At least one person did not like the automatic repositioning of

the windows and the related automatic panning.)

 Operators will need sufficient experience to fully exploit the multimedia capabilities

 It is stressed th at op erato r m ust not b e confused by ―non determ in istic‖ disp lay m eth ods.

It is clarified that the adaptive system is something akin to playing chess, the rules are

deterministic, but the combinations available are enormous.

 One improvement would be to reduce the speed with which the windows are re-

positioned or resized (operator might miss something)

 T h e im p lem entation of a ―un do ‖ m ech an ism , w ith w h ich th e op erator can autom atically

uncheck the steps of a procedure, would be useful.

 It is not an easy task to correctly ascertain the behaviour of an operator

 312

 There should be support for the system to modify the amount of information displayed

on the screen dependent on the experience of the operator.

 Overlapping alarms should be reduced in size.

 Automatic zoom might be confusing some time

 Auto-adaptivity should intervene when operators appear confused

Moving Storm

The following comments were given:

 In case o f serio us fault on the H V netw ork, on ly ―root‖ alarm s sho uld b e disp layed.

 It is important that only network critical alarms top the alarm list, there is no need to

track alarms chronologically without reference to their importance.

 V ideo im ages are useful on ly fo r a few sub statio ns (―stran ge‖ sub station s in E N E L ‘s

terminology)

Workshop in ENEL (Milan)
A general initial feeling of conservationism on the side of the final users was quickly replaced by a

much more collaborative attitude, finally resolving into enthusiastic and sincere offers of

collaboration for possible future developments of the technology. The following comments were

given:

 A correct and gradual approach to the operator should be undertaken in the

beginning, in order to avoid outright rejection of the new functionality. This point has

been strongly stressed by the people in charge of electrical operation.

 The idea of an Auto adaptive Multimedia Interface was deemed very promising.

 313

 The potential to interact vocally with the system was deemed very promising. This

capability could be used, for instance, to display portions of the network or specific

diagrams, instead of performing a time-con sum in g ―search ‖ op eration .

 They were also very interested in the use of particular icons/symbols and graphical

representations to highlight important events.

 The introduction of a more probabilistic approach in judging network events and

solutions has been suggested by the ENEL research people.

 One aspect was deemed to be very encouraging and potentially useful and effective. That

is the ability of the system to accentuate unserviced alarms. If an alarm has been

acknowledged, but not properly dealt with for a set period of time, the same alarm

could be automatically brought back again and again, with increased significance to the attention

o f the op erator. T he fact th at an op erator ackno w ledges an alarm w itho ut really ―seeing‖

it has been reported as one of the possible causes of prolonged power outages, and the

control system should take proper action to ensure that the operator has not been

distracted. T he fact that th e op erator h as ―p roperly dealt‖ w ith th e alarm is n ot easy to

establish, but a few basic rules could be applied: the fact that the operator has opened

windows or required information somehow related to the elements involved outage

could be considered a reasonable clue that he/she has actually seen the problem.

 Performance Based Regulation Criteria, w h ich in recent P o w er A uthorities‘

legislation have sought to implement rules that guarantee a good quality of service, could

provide a very strong motivation towards delivering proactive control systems, which

―m on itor‖ the action s (on non -action) of the operators, in order to insure prompt

responses to alarm situations.

 Eventually this might generally be considered as the main reason why control systems

should eventually be improved. Every Utility should have as its prime goal guaranteed

continuity of service to its customers and Performance Based Regulation Criteria actually

 314

multiply this need, as they strongly penalize power outages that exceed certain given

maximum length and frequencies.

Conclusions
The AMEBICA project was a collaborative effort between a mixed consortium of academics and

industrialists. However, the author produced the adaptive architecture and the detailed design of

the agent system as well as the coding and development of the key reasoning agents.

This chapter has examined the adaptive system used in the domain of Electricity Network

M an agem ent (E N M). T he traditio nal system ‘s flaw s w ere listed an d used to dem on strate in

which areas the adaptive system could be useful. A scenario was produced to test the adaptive

system on, that of a moving storm.

The system produced was tested on a series of experts and end users, the results of which are

given in this chapter. The overall results were good; most participants saw the value of the

system, although they indicated certain refinements might be needed.

 315

C h a p t e r 1 1

CONCLUSIONS AND RECOMMENDATIONS

Introduction
Adaptive Multimedia Interface Research is a recent, and currently very active research area.

Approaches differ through the ways and means used to obtain adaptation (and even in the

definition of what adaptation actually is). Examples have been given of an Automated

Multimedia Authoring and Multimedia Presentation Tools approach, the development of

intelligent interfaces for process control for the nuclear power industry and the PROMISE

project, which provided dynamic choice of media to operators at runtime. Many approaches have

adopted a Knowledge-Base Systems approach.

All the above works are based on classical Artificial Intelligence techniques. Such techniques are

powerful when action must be decided upon and taken in the context of a consistent and

monotonic world. However in many process control situations (like our proposed industrial

applications) operator awareness, system state and context are continuously changing and are

sometimes in contradiction with each other. Any multimedia interface in this environment needs

to achieve a balance between these three components and be flexible enough to adapt to changes

in the relative importance of each.

The approach adopted, for the system presented in this thesis, achieves this balance by driving

adaptation from a combination of the process and operator state. This method is novel and has

provided an important model of what drives adaptation.

 316

Additionally, the system presented in this thesis fulfils the main requirements of an adaptive

system . It tries to reduce the need of th e op erator to request h elp , to anticip ate the operato rs‘

needs and to reduce the frequency and magnitude of operator errors. Since there are not usually

enough interface resources to achieve all these goals, the system deals with this using a priority

approach.

The AMEBICA adaptation principle provides adaptation in two main forms

 On-line selection of a rendering from a set of possible representations together with the

parameters of that representation (we call this a flexible mapping)

 Spatial adaptation of presentation, where the system layout manager attempts to make

the display as organised and clear as possible (we call this spatial adaptation).

Our on-line selection approach differs from traditional (rigid) interfaces in that interface

mappings are chosen at run-time from a set of defined mappings. This is in contrast to many

current approaches where mapping decisions are made at design time and then fixed (usually with

a one-to-one correspondence). These rigid mappings are always a compromise. Although our

approach still requires design work to be completed on the nature of the representations, many

alternative mappings are retained from the design process. The most appropriate selection can

then be made at run-time taking into account the current context. This flexible mapping

approach involves run-time reasoning between a set of predefined alternatives.

The second form of adaptation uses run-time reasoning to create new instances of adaptation.

The domain here is spatial control of presentation. It is generally accepted that as the complexity

of an application grows, the operator spends a significant part of their time arranging and re-

sizing windows on the screen to suit the current task/context, in addition to acting upon the

information present in the windows. Experiments have shown that task completion times in

windowed systems are often longer than in non-windowed systems due to the time spent in

w in do w arran gem en t (B ury 1985). So , altho ugh m ultip le w in do w s reduce the user‘s short-term

memory load, they often impose an additional management workload on the user. Our system

 317

attempts to alleviate this problem by continuously reasoning about the spatial layout and making

on-line adjustments in order to maintain clarity and important relationships.

The system has achieved the following:

 Paying attention to the current context and using it to control the behaviour of the

interface.

 Reacting to unanticipated events. This is very important when trying to reduce operator

overload in emergency situations.

 Interrupting actions. When the system state changes, it may be important to be able to

interrupt on-going actions in order to perform other actions that have increased in

importance. Interrupted actions should be recorded and perhaps can be resumed later.

It is also important that during such spatial adaptation processes, information should be moved

as little as possible. Thus, in the AMEBICA system, adaptation has been bounded so that usually

adaptation is only allowed before information is placed on the screen. Generally speaking, once

upon the screen, information should not be subject to large displacements unless absolutely

necessary. AMEBICA will also place relevant information as near as it can to other information

of the same type, and will attempt to select the best representation for that information in the

current context (using flexible mapping).

The system tries to solve many of the problems inherent in mission critical systems. Such

problems arise from the increased complexity of the controlled system, the need to react in a

timely fashion to critical problems, to ensure maximum reliability, and finally the need to manage

the system so that its functioning at its optimum economic point at all times.

Operators, in modern process systems, are increasingly experiencing difficulties handling the

huge quantities of real time information that are critical elements of their job. Their task is not

aided by the added responsibilities placed on them by the economic consequence of their actions.

 318

Tools that relieve part of this responsibility and help the operator discovering and discriminating

the most essential information from the many thousands of variables available are of primary

importance.

General System Overview
General System Successes
This section details the major successes the adaptive system has achieved. The final system

achieved most of its early goals, and strongly adhered to the vision dictated by the initial

conceptual architecture.

Streaming

The streaming concept was a vital constraining element of the system design. Without the ability

of the system to handle signals in real time, the system would have been inoperable. In critical

Process Control situations, such delays are unacceptable. Thus, the basic structure of the

architecture was dictated by the constraint that it should incur no delays, and yet reason in a

precise manner about the nature of the adaptation it would produce. This resulted in a difficult

trade-off between reasoning time, and the ability of the system to operate as swiftly as possible.

It was clear that this problem could not be solved purely through the use of raw processing

power, or through an increase in available system resources. The situation required a conceptual

mechanism that rendered information in a highly optimised manner. This mechanism was the

streaming concept.

The streaming concept was founded on a basic tenet decided upon early in the inception of the

system. This tenet stipulated that process signals should pass straight through the system and be

rendered instantly at the interface, in the form of a default representation. The system would act

on the meta-data provided by the Process Agent as it registered the signal. Only after this would

the system then decide upon the form and magnitude of the adaptation required, and performs

its adaptation on the default representation, and other representations if necessary. The difficult

 319

decision faced at conception was deciding whether the operator might be confused by a default

representation appearing on screen, and then potentially changing its form and size (and perhaps

location). However, this problem was deemed less important than the operator not receiving

critical data immediately, even if the data was not in an optimised form. In fact upon completion

it was discovered that the actual adaptation system was sufficiently rapid that the operator usually

did not notice, or was unaffected, by the change.

Generality

Another important cornerstone of the architecture was its ability to be self-contained yet

customisable so that it can operate in a variety of different domains. The ability of the system to

be generic and applicable to different types of domains will mean significant savings in the

development costs of producing a fully adaptive interface system.

This allows designers to load the system with a set of customised representations, and inform the

system of the constraints under which those representations should be considered for adaptation.

They must also translate AMEBICA system calls to interface calls, and these instructions must be

converted to platform/process dependent calls that will be rendered on the applied platform.

Although all the elements required to make the system generic were developed and implemented

in the prototype, the prototype itself was not fully generic, because it could not be attached to a

real Process Control interface. Instead, a custom Java based interface (using JLOOX) was

constructed which AMEBICA manipulated. It proved the principles and worked well.

Use Of Multimedia

The adaptive system utilised a wide variety of different media. Both the audio and visual

modalities were used. Within the graphical modality, static and dynamic representations were

used by the system for presentation purposes. Extensive use of text, animation, symbols,

dynamic graphics and video were implemented in the prototype successfully. Audio was used in

the form of tones and voice.

 320

The system also incorporated speech recognition capabilities to allow the operator to interact

with the system on a variety of levels. Redundancy was extensively used to re-enforce the

op erator‘s view o f th e interface, in term s o f accentuating certain representations.

The system also allowed flexible configuration of representation parameters. So representations

could be altered on the fly to set such aspects as colour, size, animation and form of any visual

representation.

Successful Production Of Two Exemplar Prototypes

The adaptive architecture was customised and tested on two exemplars the ENM (Electricity

Network Management) process and the TPP (Thermal Power Plant) process (not reported in this

thesis). Both exemplars were customised with relatively few problems by expert industrial

developers in those areas. The usability studies for both domains indicated very positive results,

both by end users and by system designers.

One of the most positive aspects of the study on these two exemplars was that despite being

totally different in terms of interface format and requirements, the adaptive system operated

effectively on either.

The Adaptation Matrix

The Adaptability Matrix has already proved to be enormously useful in defining the adaptability

conditions and responses in the two AMEBICA industrial domains. It provides future designers

of adaptive systems a framework with which to match appropriate actions to particular well-

defined contexts. It also enables designers to understand the complicated nature of adaptation,

and apply their expertise in a well-defined manner

However a number of problems remain. The most serious of these is the recognition of the

operator situation. How does one distinguish between a delayed response and an erratic one?

There are many cases where the distinction is obvious but there are others where such a

distinction will be difficult. Fortunately, in most Process Control environments there exist a set

 321

of procedures the operator must follow in a variety of different situations. These guidelines

provide a very useful basis for determining the operator state. If the system can deduce the

current context, and cross-reference the relevant procedures for that context it can then compare

the operators current actions, with those that should be done according to the procedures. Thus,

the system has a reasonable chance of deducing whether the operator is performing actions in the

wrong order (erratic), or if they are performing the right actions according to the procedure, but

taking longer than is recommended (delayed). This situation is specific to a closed loop system

such as the Process Control domain. Determining operator actions in an open loop system is far

harder.

Another way of attacking the operator state recognition problem would be to record interactions

and compare with operator perceptions of the situation. In experimental situations, the operators

could be asked to input their state as the interactions progress.

The AMEBICA Industrial Exemplar

The usability studies have indicated that the AMEBICA demonstrators were largely successful.

They flexibly managed the information and the procedures required during emergencies. It also

successfully demonstrated maintenance interventions including alarm views, mimics, historical

views, operator guides, emergency tracing and recovery, optimisation and on-line help. More

specifically, the introduction of AMEBICA capabilities improved the overall interface and

operators acceptance by the integration of new features such as:

 Auto-adaptive management of different graphical elements and formats

 Spatial reorganization of information and animation of graphical elements

 Automatic tracking of alarms and process information

 Integration and presentation of static and dynamic images, graphical and textual

documents (e.g., description of network components, operational and procedural

 322

information, schemes and construction details, etc.) depending on a specific operational

contexts

 Integration of audio support (vocal input, alarm sounds)

 Management of different levels of granularity dependent on the zoom and scale factors,

with the capability of selecting areas of interest for enlargement and provision of detailed

information

The advantages specifically gained in the ENM specific application were:

 Enhancement of the graphical interface by more flexible information management and

improved realism of interaction

 More accurate and detailed descriptions of network information by integration and joint

management of multimedia data (e.g., on-line documentation, live images, animation,

clips.)

 Improved configurability due to the systems generality. Therefore development times

and cost should be significantly reduced.

 Improved safety margins through the efficient use of alarms and warnings and utilisation

of optimum media

 The reduction of delays in the operator actions. As a consequence, decisions and actions

are performed in a timely fashion.

 The avoidance of lost revenue due to the adaptive system reacting promptly in order to

avoid the possible failure of the system due, for example, to undetected degradation.

Additionally, avoiding system failure means the supplier will potentially avoid penalties

for having failed to satisfy mandatory standards of supply.

 Increased security and safety of the process itself since many electricity blackouts have

resulted from the avalanche effect derived from a relatively minor initial disturbance.

These minor initiating problems are often not correctly identified and corrected at the

 323

beginning. The adaptive system is expected to help operators detect these types of

problems.

General System Limitations
The previous section detailed some of the systems successes. Of course, as with any complex

system, some limitations inevitably became apparent. This section outlines some of the general

problems experienced.

More Sophisticated Reasoning

Although the system generally worked well, there was room for improvement. One area in

which the system could be improved is in its reasoning ability. This is true particularly in the case

of consistency checking. A more sophisticated reasoning mechanism would be able to strike a

better balance between being wholly consistent and being wholly adaptive.

Greater Exploration Of Matrix Constraints

Although the matrix constraints work very well within the current system, a more comprehensive

study of operator actions within a specific process system would give a more accurate and

detailed appraisal of the adaptive system behaviour. The matrix as it stands, provides a good

general adaptation framework. To operate well in other processes a better-tailored matrix would

provide the system with adaptation operations better suited for that environment.

Fuller Understanding Of Operators Role

D educin g op erator‘s b eh avio ur an d condition is a very difficult, uncertain problem. However,

since the Process Control environment is a closed loop system, it makes the deduction of

adaptation conditions a somewhat simpler problem. Since the operator must follow certain

procedures under a certain set of process conditions, the system can watch for these conditions

an d fo llo w th e op erator‘s action s. B y com p arin g th e actual actio ns to those that pro cedure

requires, a deduction can be made of how far the operator is deviating from expected

performance. Even utilising this method it is still difficult to correctly ascertain accurately the

operators condition. Much more work is required in this area.

 324

A s the system stands there is on ly a sup erficial exam in atio n of the op erato r‘s co nditio n, w h ich

suffices for the prototype. In the future, a more sophisticated, powerful mechanism is necessary

to deduce operator state.

Implementation Issues
Implementation Successes
In the previous section an examination was made of general, system wide success and limitations.

In this section specific issues relating to the actual prototype implementation, its successes and

limitations are detailed

Real Time Operation

Real time operation of the system was imperative if the system was to be an acceptable and

efficient adaptation system. It was critical that the system operate in a timely manner. This was

achieved through several optimisation procedures imposed on the system.

The streaming concept ensured that data streams arrived at the interface in a timely manner,

without adversely affecting the reasoning process. Part of the general performance problem was

the nature of the Java language, which required optimisation to ensure timely operation. This

was achieved by the use of the HotSpot Just-in-time compiler, and heavy code optimisation. In

other programming languages support for multi-threading is limited (C++ for example) and

makes programming of stable, reliable multi-agent system very difficult. Utilising Java, however,

within AMEBICA, provided built-in support for threads and provided a way to obtain fast,

lightweight concurrency within a single process space.

The initial use of the JACK agent toolkit was abandoned midway through the implementation as

it slowed down inter-agent communication. Although it provided many conceptual benefits at

design time and handled multi-threads within a single address space very well, it slowed

 325

operations down by an unacceptable factor. To counter this, the final implementation was built

using pure Java, and was designed to act in a similar way to the JACK agent code.

Additionally, JACK utilised a BDI (Belief, Desires and Intentions), strong AI framework for

implementation. In an optimised, closed loop system such as the one described here, the BDI

model is not really appropriate. Therefore this system was abandoned for a simpler, more

dedicated Java framework where the reasoning process could match constraints with a single

plan, rather than a variety (under JACK).

System Performance

The system prototype operated within all the performance boundaries required of it. There was

only a negligible delay in the time between the default representation being rendered at the

interface, and the adaptive system operating to optimise that representation. This performance

gain was achieved partly through the form and nature of the architectural framework. The

architecture was designed for optimum performance operation, and this was achieved through

highly efficient message exchanging between agents so that communication was directed

specifically according to the position of agent within the system. For instance, bi-directional

unicast communication was used between agents that only communicated with each other, and

no other agent.

Additionally performance gains were achieved by carefully designing the multi-agent system for

optimum performance, by striking a fine balance between having several smaller agents in

separate threads dealing with conceptually separated processes, and by combining several

concurrent tasks into monolithic agents. It is important achievement of AMEBICA that a

balance between these competing constraints was reached.

Another key method of increasing system performance was achieved by optimising the form of

reasoning the multi-agent system used. For example, very basic, but fast reasoning increases

system performance, but severely limits the effectiveness of the resulting adaptations. Elaborate,

complex reasoning achieves the best possible form of adaptation, but renders the results

 326

obsolete, as the time taken to perform this reasoning is prohibitively long. The Multi-agent

architecture succeeded in doing this, by carefully stripping down interactions to a minimum, and

rejecting reasoning by agent negotiation. Instead the key reasoning processes were implemented

in two highly optimised agents. By reducing the overhead of a many-threaded system, impressive

performance gains were achieved

Successful Implementation Of Generality

One of the main achievements of the architecture was to implement the system so that it offered

a generic system, which allows deployment on a variety of different platforms and processes. By

coding the system in Java the system could be implemented on most available platforms. The

implementation also used CORBA extensions to Java to interface the Process Model with the

Process (in the prototype implementation, the Process was represented by a process simulator).

The use of CORBA also allowed the system to be integrated with most legacy software, through

the use of wrappers.

Since the prototype could not be integrated with a real process graphical user interface, a custom

interface was developed. However, the prototype still maintained the ability to allow interfacing

with a real process interface. This ability was implemented through the use of an adaptor called

the Abstract Rendering Interface (ARI).

A generic approach was implemented by the complete separation of internal general-purpose

knowledge and external application specific knowledge. The internal knowledge is represented

and used by the internal framework agents to manage the graphical user interface. The external

knowledge is concentrated into some special elements (Process Model Agent, Media Selection

Tables, Graphical Objects) and is entered during customisation. The framework knowledge does

not contain reference to any particular application domain and is expressed in terms of a

graphical object management ontology. The main elements are streams, evidence levels,

representations, graphical objects and graphical object properties. Such elements are managed

with the help of rules and constraints that describes their relationships. Human factor rules

 327

express general knowledge on best user interface organization modalities to optimise user

understanding and to reduce stress and confusion.

The architecture allows the system to be integrated into existing applications without a complete

re-design. T h is ab ility is exacted thro ugh th e use o f a ―flexib le m app in g‖ app ro ach . A M E B IC A

w orks ―in p arallel‖ w ith a con vention al app lications and manipulates user interface graphical

objects in an asynchronous way. The user interface can continue to work as it would without the

AMEBICA auto-adaptive functionality. The integration of AMEBICA and the application

requires some modifications at the graphical interface to allow AMEBICA to operate on it

through the Abstract Rendering Interface. It would also require the system designers to represent

specific application knowledge with the AMEBICA customisation modalities.

Spatial Adaptation And Interface Configuration

Spatial adaptation of the interface worked very well. . Initially, some problems were encountered

with the system placing renderings in the wrong position and of an incorrect size. After some

investigation it was discovered that the problem was not with the Media Allocator Agent, but

rather with the Presentation Agent. It was deriving spatial co-ordinate incorrectly and this

problem rippled through to the Media Allocator. The problem was swiftly arrested, although it

did highlight the tight inter-dependencies between these two agents. It was suggested that in

future versions of the system, the Presentation Agent might be developed as part of the Media

Allocator Agent. Although, this might improve performance marginally, it would violate the

conceptual differences between the agents. By integrating the two together, problems might arise

when attempting to update the Presentation Agent, and although small performance gains might

be achieved, it is certainly possible that these would be lost by overburdening the Media Allocator

agents computational thread system, and thus increasing reasoning time.

Intra-Agent Message Passing

The system successfully used a mixed initiative approach to agent communication. A single,

global communication policy was rejected as being too cumbersome and inefficient. Instead

 328

several communication strategies were adopted depending on the position and role of the agents

within the architecture. Most of the key communication routes were point-to-point (most

efficient communication method, low overhead). At strategic points a broadcast approach was

used (Media Allocator Agent to Media Agents).

A very successful use of data abstraction was used to provide maximum meta-information about

system context using tried and tested Object Oriented approaches. Thus, Meta data was

encapsulated and captured within Representation Data objects. This allowed successive agents to

glean appropriate information about the state of other objects without resorting to extra

communication steps (further improving performance).

Implementation Limitations
Since the implementation was a prototype, not all of the full functionality could be implemented

in the time allowed. The following section describes some of the systems limitations.

Limited Full Use Of Complete Range Of Media

Although a wide range of different media were implemented, it was not possible to fully integrate

all the media types required in a full process implementation. The area most affected was the

auditory domain. The prototype concentrated mainly on graphical media, at the expense of the

auditory medium. The system did implement speech recognition, and basic tones for alarm

signals. However, earcons and other auditory forms were not included. This did not detract

greatly from the successful operation of the system, it did however limit the systems flexibility.

Customisation Difficulty

The system requires customisation to allow it to be deployed upon different platforms and

processes. To make this task easier it is preferable for the system to incorporate within it, a full

set of customisation tools that allow designers to set up the system for their specific process with

a minimum amount of effort.

 329

At the present time these tools do exist but only in limited form. Although this did not affect the

prototype, it might have a detrimental affect on designers using it on other systems.

Limited Implementation Of Operator Agent And Human Factors Database

The final prototype did not fully implement all the functions required of the Operator Agent and

Human Factors database. The Operator Agent was not very sophisticated and succeeded only in

deducing, in a basic fashion, the operator state. For the limited scenarios tested on the prototype

this was not a problem, for deployment on a much more comprehensive, industrial system it

would require a great deal more development.

The same is true for the Human Factors database. A limited set of rules was implemented that

were customised to meet the scenarios the prototype on which they were tested. For full

operation on an industrial scale, a much bigger set of rules would be required. Both of these

issues arose due to time constraints, but with additional time and further work, both systems

could be fully implemented with little difficulty.

Debugging Problems

As in all multi-agent systems debugging became an important issue. Many problems were

encountered when attempting to successfully debug the system. To alleviate these problems

several very useful debug tools were constructed which allowed developers to trace intra-agent

messages, and allowed designers to observe the internal states of key variables. For system

construction, these tools were found to be very useful.

Limited Consistency Checking

The Consistency Database was only implemented in a limited fashion. As in the case of the

Human Factors Database and the Operator Agent, the consistency checking was limited to the

two exemplars the prototype was to be tested on. This in no way invalidated its operation; it

merely demonstrated the system working for a customised environment only.

 330

Overall Conclusion
The work in this thesis attempts to deal with the problems of bandwidth-limited interfaces and

information overload by introducing an element of adaptation into the interface to render the

most salient information at the most appropriate times. By doing this, an element of flexibility

was introduced at the interface, which improves operator efficiency, and the way in which

operators deal with process disturbances. A multi-agent approach was adopted to allow the

actors responsible for making decisions about suitable adaptations, to each be represented by an

autonomous agent.

This thesis has presented and discussed the rationale behind, and the conceptual design of, an

intelligent, flexible, agent architecture. It has demonstrated how adaptation can be bounded, and

how system rigidity can be avoided via the use of a flexible representation mapping system.

Additionally, the architecture has been designed to ensure that the core agent framework is

reasonably process-independent, and therefore applicable to many application areas. This

process independence was achieved by the use of external interfaces to both the process and the

system-rendering engine, which translate process dependent terms to proprietary terms and vice

versa.

The system was constructed as a prototype for use in two different industrial scenarios, the

Thermal Power Plant and Electricity Network Management systems. In both cases the prototype

was tested on actual operators, and was largely deemed to be successful. To operate within these

domains it was critical that the system operate in a timely manner. This was achieved through

successful code-optimisation techniques, and by the use of tools to increase the speed of the Java

language. Additionally, concepts such as the Streaming Concept allowed important data to be

displayed as quickly as possible. Above all, the AMEBICA system has shown that multi-agent

approach, when carefully constructed, can achieve the performance levels required.

Finally the thesis has investigated the issues surrounding adaptation and has suggested (through

the Adaptation matrix) a possible design methodology for producing adaptive systems.

 331

Future Work
There are still many issues to be resolved, and this thesis has addresses merely some of the more

salient points. Many problems were encountered in the construction and prototyping of the

architecture that suggested avenues for further investigation. Such points include:

 Increasing run-time speed

 Improving the systems recognition of operator states.

 Improving thread resource usage to ensure efficient inter-agent communication and

prevent deadlock.

 Incorporating greater media input.

 Testing on different process domains.

 Improved consistency checking

 Full implementation of the Operator Agent and Human Factors Database

 Full implementation of customisation tools, to improve the systems ability to be

deployed on different processes

 Test deployment on a real process interface attached to a real process.

 Full implementation of a variety of media including a full selection of auditory modes.

Each of these topics would help streamline the prototype and provide invaluable date for future

adaptive interface designers of real-time process control systems The system as it stands, in

prototype form, is merely a platform for the testing of new concepts. To be deployed on a full

system, a great deal more work would be required on stabilising the system, and ensuring system

performance is totally optimised

 332

 333

BIBLIOGRAPHY

Agre PE & D. Chapman(1987) „P engi: A n Im plem entation of a T heory of A ctivity‟, In: Proceedings of
the 6th National Conference of Artificial Intelligence, Morgan Kaufmann, 268-272

AHCI (1998), Aviation Human-Computer Interface (AHCI) Style Guide, Technical Report; Report
Number 64201-97U/61223, May 1998

Alexandros M (1995) „A m althaea: Inform ation D iscovery and F iltering using a M ultiA gent E volving
E cosystem ‟,., MIT Media Lab Report,01/04/95

A lty J. L .& , B ergan M . (1992), ‗Guidelines For Multimedia Interface Design in a Process Control
Application‘, Int. C o nf on D esign and Safety o f N uclear R eactors A np'92, V o l 4, (O ka, Y , an d
Koshizuka Eds.), Atomic Energy Society of Japan, pp 43 Iv-1 to 43 Iv-7

Alty J. L., Bergan M., Craufurd P., Dolph in C . (1992), ‗Experiments using Multimedia Interfaces in
P rocess C ontrol: S om e Initial R esults‟, Hyperstructure Concepts and Cooperative Work, Proc. 2nd
Eurographics Workshop on Multimedia, Darmstadt, (Ch. Hornung Ed.), EG Tech. Rep.
EG92MU, pp 27-50

Alty, J.L . & M cK ell, P . (1986) ‗Application Modelling in a User Interface Management System ,‘ in: M .D .
Harrison and A.F. Monk (Eds.), People and Computers: Designing for Usability (Cambridge:
Cambridge University Press).

A lty, J.L . & M ullin, J. (1987) ‗The role of the dialogue system in a User Interface Management System‘, in: B .
Shackel and H-J. B ullin ger (E ds.), P ro c. IN T E R A C T ‘87, Second IF IP C on ference on H um an -
Computer Interaction (Amsterdam: Elsevier Science Publishers B.V.).

Andre, A. & Wickens, C. (1992). ‗Compatibility and Consistency in Display-Control Systems: Implications
for A ircraft D ecision A id D esign‟. Human Factors, 34 (6).

A ren s Y ., and H o vy (1995), E . ‗The Design of a Model-Based Multimedia Interaction Manager‖‘. A rtificial
Intelligence Review, Vol. 9,Num 2-3,
Austin J.L. (ed.) (1969), „H ow to do T hings W ith W ords‟, Oxford University Press, 1962.

B ainb ridge, L . (1987), ‗Ironies of Automation‘, N ew T ech no lo gy and H um an E rro r, pp 271 - 283,
John Wiley

 334

Baker (1996) Baker, A.D, „C hapter 8 - Metaphor or Reality: A case study where agents bid with actual costs
to schedule a factory,‟ Market-based Control, Scott H. Clearwater (ed.), World Scientific, pp. 184-223,
1996.

B arnard, P . (1987) ‗Cognitive Resources and the Learning of Human-Computer D ialogues‟. In Carroll, J.
(ed.) Interfacing thought: Cognitive aspects of human-Computer Interaction. MIT Press,
Cambridge, Mass

B eltracch i L . (1988), ‗Alarm Coding of a Model-Based Display‘, H um an F actors an d P o w er P lants:
Proceedings of the IEEE Fourth Conference Monterey, California, 5-9 June, pp 157 - 164.

B enyon D .R ., In nocent P .R ., M urray, D .M . (1987) ‗S ystem adaptivity and the m odelling of stereotypes‟.
In: B. Shackel and H-J. B ullin ger (E ds.), P ro c. IN T E R A C T ‘87, Second IF IP C on ference on
Human-Computer Interaction (Amsterdam: Elsevier Science Publishers B.V.).

B enyon D .R ., M ilan , S. an d M urray, D .M . (1987) ‘M odelling users‟ cognitive abilities in an adaptive
system ‟, In: J. Rasmussen and P. Zunde (Eds.), Proc. 5th Symposium EFISS, Risø National
Laboratory, Denmark, November 1987 (New York: Plenum Publishing).

B enyon , D .R ., Jenn in gs, F . an d M urray, D .M . (1990) ‗A n adaptive system developer‟s toolk it‘. In:
D iap er, D . C ockton , G ., G ilm ore, D . and Sh ackel, B . (E ds.), P ro c. IN T E R A C T ‘90, T h ird IFIP
Conference on Human-Computer Interaction (Amsterdam: Elsevier Science Publishers B.V.).

B enyon , D .R . an d M urray, D .M . (1988) ‘Experience with adaptive interfaces‘,T he C om p uter Jo urn al,
Vol. 31(5).

B enyon , D . R . & M urray (1993a), D . M . ‗Adaptive Systems; from Intelligent Tutoring to Autonomous
A gents.‟. Knowledge-based Systems, 6 (3)

B enyon , D . R . & M urray, D . M . (1993b) ‗Applying user modelling to human-com puter interaction design‟,
AI Review (6)

B enyon , D .R . (1984) ‗Monitor: a self-adaptive user interface‟. In: B. Shackel (Ed.), Proc. INTERACT
‘84, F irst IF IP C onference on H um an C om p uter Interaction (A m sterdam : E lsevier Scien ce
Publishers B.V.).

B enyon , D .R . (1988) ‗U ser m odels: w hat‟s the purpose‘, In: M . C oo per an d D .D odson (E ds.) A lvey
Knowledge-Based Systems Club, Intelligent Interfaces Special Interest Group, Proc. of the
Second Intelligent Interfaces Meeting, May 28-29th 1987, London (London: Department of Trade
and Industry Information Engineering Directorate).

B enyon , D .R . (1990) ‗Information and Data Modelling‘. B lackw ell Scientific P ub lishers, O xford

 335

B enyon , D .R . (1992a) ‗The Role of Task Analysis in Systems Design‘, in : Interactin g w ith C o m p uters,
vol. 4 no. 1, 102 – 121

B enyon , D .R . (1992b) ‗Task Analysis and Systems Design: The Discipline of Data.‘ In Interactin g w ith
Computers, 4(2) 246 - 259

B enyon , D .R . (1993a) ‗Adaptive Systems; A Solution to Usability Problems‘, in: U ser M o delling and
User Adapted Interaction Kluwer. (1993) 1-22

B enyon , D . R . (1993b) ‗Accommodating Individual Differences through an Adaptive User Interface‘. In
Schneider-Hufschmidt, M., Kuhme, T. and Malinowski, U. (eds.) Adaptive User Interfaces - Results
and Prospects, Elsvier Science Publications, North-Holland, Amsterdam. 1993

B enyon , D . R (1997): ‗Intelligent Interface Technology to Improve Human-Computer Interaction (T utorial)‟,
In : H C I Internation al ‘97. San F rancisco , U SA . (1997).

Bieger & Glock (1984): Bieger, G R & Glock M D ‟T he Inform ation C ontent of P icture-Text
Instructions‟ Journal of Experimental education 53 68-76

B o ck H . W . (1988), ‗Future Main Control Room Design For Siemens Nuclear Power Plants‘, M an -
Machine Interface in the Nuclear Industry: Control and Instrumentation, Robotics and Artificial
Intelligence: Proceedings of the International Conference, Tokyo, 15-19 February, pp 613 - 623,
International Atomic Energy Authority.

B oo hrer (1975): B oohrer, H R ―‘Relative Compehensibility of Pictorial Information and Printed word in
P roceduralised Instructions‟, Human Factors 17, 3, 266-277
Boone, G . (1998). ‗Concept features in Re: Agent, an intelligent email agent.‘ P ro ceedin gs o f th e Secon d
International Conference on Autonomous Agents (pp. 141{148). Minneapolis: ACM Press.

B o sser, T . (1987) ‗Learning in Man-C om puter Interaction‟, Springer-Verlag

Branjik, G., Guida, G. and Tasso, C. (1987) User modelling in intelligent information retrieval,
Information Processing and Management, Vol. 23(4).

B ran jik, G ., G uida, G . an d T asso , C . (1990) ‘User Modelling in Expert Man-Machine Interfaces: A case
study in Inform ation R etrieval‟, IEEE Trans. Systems, Man and Cybernetics, Vol. 20(1)

Bransby M. and J. Jenkinson (1998), IEE Computing and Control Engineering Journal, Vol. 9,
Number 2, p61-67

 336

Bronisz, D., Grossi, T. and Jean-M arie, F . (1989) ‗Advice-giving dialogue: an integrated system‘. In : P roc.
6th Annual ESPRIT Conference, Brussels, November Kluwer Academic Publishers.

Brooks RA. (1991) ‟E lephants D on‟t P lay C hess‟, P. Maes(ed.), Designing Autonomous Agents: Theory
and Practice from Biology to Engineering and Back The MIT press, 3-15

B ro w ne, D .P , T revellyan , R ., T o tterdell, P .A and N orm an , M (1987) ‗Metircs for the building,
evaluation and comprehension of self-regulating adaptive systems‘. In B ullin ger, H .J. an d Sh ackel, B (eds),
IN T E R A C T ‘87. Elsevier – North Holland, Amsterdam

B ro w ne, D .P ., T otterdell, P .A . an d N o rm an, M .A . (1990) ‗A daptive U ser Interfaces‟ (London:
Academic Press).

B ro w ne, P . D (1993). ‗E x periences form the A ID project‟. In: Schneider Hufschmidt, M., Kuhme, T.,
Malinowski, U. (eds.): Adaptive User Interfaces:Principles and Practice. Adaptive User Interfaces.
Elsevier Science Publishers B.V Amsterdam, North-Holland. (1993) 69-78

Brustoloni Jose C (1991) „A utonom ous A gents: C haracterisation and R equirem ents‟, , Carnegie Mellon
Technical Report CMU-CS-91-204, Pittsburgh: Carnegie Mellon University

Bundy, A. (1983) (ed.) Alvey 1983 Intelligent Front End Workshop 26-27 Sept. 1983 C o sen er‘s
House, Abingdon, England. DTI, London

B urch (1973) B uch, N . ‗T heory of F ilm P ractice‟. Saeker & Warburg: London, 1973

B urton, R . R . (1982) ‘D iagnosing B ugs in a S im ple P rocedural S k ill‟ in D. H. Sleeman and J. S. Brown
(eds.) Intelligent Tutoring Systems. (Academic Press, New York)

Bury (1985): Bury K.F, S.E.Davus and M.J.Darnell; „W indow Management; A review of issue and some
results for user testing‘, Technical Report HFC-53, IBM Human Factors Centre, San Jose, CA, June
1985

C arberry, S. (1989) ‗P lan recognition and its use in understanding dialog‟. In: W. Wahlster and A. Kobsa
(Eds.) op. cit. Card, S., Moran, A.P., and Newell, A. (1983) The Psychology of Human-Computer
Interaction (Hillsdale, NJ: Lawrence Erlbaum Associates).

C arro ll, J.M . & M cK en dree, J. (1987) ‗Interface design issues for advice-giving system s‟, Communications
of the ACM, Vol. 30(1).

C arro ll, J.M . (1991) ‗The Nuremberg Funnel.‘ M IT P ress, C am bridge, M ass

 337

Chaib-draa, B ., & M o ulin, (1987) ‗A rchitecture for D istributed A rtificial Intelligent system s‟, IEEE
Proceedings, Montreal, pp. 64-69, 1987.

Chaib-draa, B., Moulin, B ., M andiau, R . & M illot, P . (1996), ‗Chapter 1 - Trends in Distributed
A rtificial Intelligence‟, G . M . P . O ‘H are an d N . R . Jenn in gs (eds.), John W iley & Son sInc.,pp. 3 -55,
1996.

Chappel H., Wilson M. (1993), „K now ledge-Based Design of Graphical Responses‟, International
Workshop on Intelligent User Interfaces, pp 29-36.

C h ignell, M .H . and H anco ck, P .A . (1988) ‗Intelligent Interfaces‟ in M. Helander (Ed.) Handbook of
Human-Computer Interaction (Amsterdam: Elsevier Science Publishers B.V.).

Chin, D.N. (1986) ‗User modelling in UC, the Unix consultant.‘ In: M . M antei and P . O rb iton (E ds.),
P roc. C H I ‘86, H um an F actors in C o m p utin g System s (N ew Y ork: A C M).

Chin, D.N. (1989) K N O M E : „M odelling w hat the user k now s in U C ‘. In : W . W ah lster and A . K ob sa
(Eds.) op.cit. Computational Linguistics, (1988) Vol. 14(3).

C o hen , P . R . & L evesque, H . J (1988), ‗R ational Interaction as the B asis for C om m unication‟, SRI
Technical note, 1988.

C o rkill, D .D ., & L esser, V .R (1983), ‗The use of meta-level control for coordination in a distribute problem
solving netw ork ‟, Proceedings of the 8th IJCAI, Karlsruhe, Germany, pp. 748-756, 1983.

C o rsberg D . (1988), ‗Effectively Processing and Displaying Alarm Information‘, H um an F actors an d
Power Plants: Proceedings of the IEEE Fourth Conference, Monterey, California 5-9 June, 1988,
pp 95 - 100.

Cote-M uno z, A . H . (1993) ‗A ID A : A n A daptive S ystem for Interactive D rafting and C A D A pplications‟.
In: Schneider-Hufschmidt, M.,Kuhme, T., Malinowski, U.(eds.): Adaptive User Interfaces:
Principles and Practice. Adaptive User Interfaces. Elsevier Science Publishers B.V., Amsterdam,
North-Holland. (1993) 225-240

C o utaz, J. (1987) ‗P A C : A n object orientated m odel for im plem enting user Interface‟. In H.J. Bullinger and
B. Shackel (Eds.) Human- C om p uter Interactio n, P roceedin gs o f IN T E R A C T ‘87 (A m sterdam :
Elsevier Science Publishers B.V.).

Crossman M., & Cooke, J.E. (1974), „M anual C ontrol of S low -R esponse S ystem s‟, The Human
Operator In Process Control (Edwards E. & Lees F. Eds.), London, Taylor and Francis 1974

 338

D avis, R . & Sm ith, R . G . (1983), ‗Negotiation as a Metaphor for Distributed Problem Solving,‘ A rtificial
Intelligence 20, pp. 63-109, 1983.

D ede, C . (1986) ‗A review and synthesis of recent research in intelligent computer-assisted instruction‟,
International Journal of Man-Machine Studies , Vol. 24(?).

D egan i, A ., Sh afto , M . & K irlik, A . (1996). ‗Mode Usage in Automated Cockpits: Some Initial
O bservations‟, NASA report

D ennett, D . (1989) ‗T he Intentional S tance‟, MIT press, Cambridge, Ma.

D iap er, D . (1989) ‗Task Analysis for Human-C om puter Interaction‟,.Chichester: Ellis Horwood

Dicken C.R. (1999); „S oft‟ C ontrol D esk s and A larm D isplays‟, IEE Computing and Control
Engineering Journal, Vol 10, Number 1 , p11-16

Dieterich, H., M alino w ski, U ., K uhm e, T ., Sch neider H ufschm idt, M (1993): ‗State of the Art in
A daptive U ser Interfaces‟. In: Schneider-Hufschmidt, M.,Kuhme, T., Malinowski, U. (eds.): Adaptive
User Interfaces: Principles and Practice. Adaptive User Interfaces. Elsevier Science Publishers
B.V, Amsterdam, North-Holland. (1993) 13-48

E dm on ds, E .A . (1981) ‗Adaptive Man-C om puter D ialogues‟. In Coombs, M. J.and Alty, J. L.
Computing Skills and the user Interface. Academic Press, London

E dm on ds, E .A . (1987) ‗Adaptation, Response and Knowledge‘, K no w ledge-Based Systems , Vol. 1(1),
Editorial.

E gan , D .E . (1988) ‗Individual differences in Human-C om puter Interaction‟. In Helander, M. (Ed.)
Handbook of Human-Computer Interaction (Amsterdam: Elsevier Science Publishers B.V.).

Elkerton , J. (1987) ‗A framework for designing intelligent human-com puter Interfaces‟, in: G. Salvendy (Ed.)
Cognitive Engineering in the Design of Human-Computer Interaction and Expert-Systems
(Amsterdam: Elsevier Science Publishers B.V.)

Endsley, M. R. (1995). ‗T ow ard a T heory of S ituation A w areness in D ynam ic S ystem s‟, Human Factors,
37(1), pp. 32-64.

Faraday P (1998), „T heory based D esign & E valuation of M ultim edia P resentation Interfaces‖‘, P hD .
Thesis, 1998

Finin, T. & Wiederhold, G. (1993), „A n O verview of KQML: A Knowledge Query and Manipulation
L anguage‟, Department of Computer Science, Stanford University,1993.

 339

F in in, T .W . (1989) ‗GUMS - A general user modelling shell‘. In : W . W ah lster and A . K ob sa (E ds.)
op.cit.

FIPA1: FIPA Rationale, http://www.cselt.stet.it/fipa/fipa_rationale.htm, 1996

FIPA97spec http://www.cselt.stet.it/fipa/spec/fipa97reston.htm, F IP A ‗97 specification -
Reston draft (ver 1.0), 19 April 1997.

Fischer, G. (1987) ‗Making computers more useful‘. In : G . Salven dy (E d.) C o gn itive E n gineerin g in
the Design of Human-Computer Interaction and Expert-Systems (Amsterdam: Elsevier Science
Publishers B.V.).

F ischer, G . (1989) ‗HCI Software: Lessons learned, challenges ahead‘, IE E E Softw are , Jan uary 1989.

F ischer, G ., L em ke, A .C . an d Sch w ab, T . (1986) ‗Knowledge-based help systems‘. In : M . M antei and P .
O rb iton (E ds.), P roc. C H I ‘86, H um an F acto rs in C om p utin g System s (N ew Y ork: A C M).

Fischer, G., Morch, A. and McCall, R . (1989) ‘Design environments for constructive and argumentative
design‘. P roc. C H I ‘89, H um an F actors in C o m p utin g System s (N ew Y o rk: A C M).

F lach (1995) F lach, J.M . & D om in guez, C .O . ‗Use-centered design‟. Ergonomics in Design, July, 19 -
24.

Foner L (1993) „W hat‟s an A gent A nyw ay? A S ociological C ase S tudy‟, Agent Memo 93-01, Agent
Group, MIT Media Lab 1993.

F o w ler, C . & M urray, D .M . (1987) ‗Gender and cognitive style differences at the human-computer interface.‘
In: B. Shackel and H-J. Bullinger (E ds.), P ro c. IN T E R A C T ‘87, Second IF IP C on ference on
Human-Computer Interaction (Amsterdam: Elsevier Science Publishers B.V.).

F ox ,M . S. (1993) ‗A Common-S ense M odel of the E nterprise‟, Proceedings of Industrial Engineering
Research Conference, pp. 178-194, 1993.

F ran klin & G raesser (1996); ‗Is it an A gent, or just a P rogram ?: A T ax onom y for A utonom ous A gents‟,
Stan, Proceedings for The Third International Workshop on Agent Theories, Architectures and
Languages, Springer-Verlag, 1996

Frivold, R., Lang. R ., & F on g, M . (1994), ‗E x tending W W W for S ynchronous C ollaboration,”‟
Electronic Proceedings of Second WWW Conference, Phoenix, pp. 559-583, 1994.

http://www.cselt.stet.it/fipa/spec/fipa97reston.htm

 340

F urn as, G . (1985) ‗New Jersey experience with an adaptive indexing scheme‘. In: A . Janda (E d.), P roc.
CHI ‘85, H um an F actors in C om p utin g System s (N ew Y o rk: A C M).

Gasser, L. & Bond (1988), A. H. (eds.),‟R eadings in D istributed A rtificial Intelligence‘, San M ateo , C A :
Morgan Kaufmann,

G asser, L . (1991), ‗Social Conceptions of Knowledge and Action: DAI Foundations and Open Systems‘,
Artificial Intelligence 47, pp. 107-138, 1991.

G enesereth , M . R . & K etchpel, S. P . (1994), ‗S oftw are A gents‟, Communications of the ACM 37
(7), pp. 48-53, 1994.

G ervasio, M ., Ib a, W ., & L an gley, P . (1998). ‗Learning to predict user operations for adaptive scheduling‟.
Proceedings of the Fifteenth National Conference on Artificial Intelligence (pp. 721-726).
Madison, WI: AAAI Press.

Gilbert& Janca „IB M Intelligent A gents‟-

G oo dw in R . (1993) ‗F orm alizing P roperties of A gents‟; CMU Internal Report CMU-CS-93-159

G ray, W ., H efley, W . and M urray, D . M . (eds.) (1993) ‗Proceedings of 1st international Workshop on
Intelligent U ser Interfaces‟, ACM Publications, New York.

G reen , J.M . H o c and D .M . M urray (E ds.) ‗Working with Computers: Theory versus O utcom e‟, (London:
Academic Press).

G reen , M . (1985) ‗R eport on D ialogue S pecification T ools in U IM S ‟, in Pfaff, G.E. (Ed.),User interface
Management Systems, Springer Verlag, Heidelberg.

G reen , T .R .G ., Sch iele, F . an d P ayne S. J. (1988) ‗Formalisable models of user knowledge in human-
com puter interaction‟, In: C.C. van der Veer, T.R.G.

G reenb erg, S. & W itten, I.H . (1985) ‗Adaptive personalised interfaces – a question of viability‟, Behaviour
and Information Technology, Vol. 4(1).

Hancock, P.A . & C h ignell, M .H . (1988) ‗M ental w ork load dynam ics in adaptive interface design‟, IEEE
Trans. SMC, Vol. 18(4).

H ancock, P .A . an d C h ignell, M .H . (1989) (eds.) ‗Intelligent Interfaces; Theory, Research and Design‘.
North-Holland, New York

 341

Hansen, S.S., Ho lgaard, L . and Sm ith , M . (1988) ‗EUROHELP: intelligent help systems for information
processing systems.‘ In : P roc. 5 th Annual ESPRIT Conference, Brussels, November 1988 (Kluwer
Academic Publishers)

H artson, H .R . an d H ix, D . (1989) ‗Toward empirically derived m ethodologies and tools for H C I developm ent‟
in International Journal of Man Machine Studies 31, 477-494

Hayes-Roth (1 9 9 5) „A n A rchitecture for A daptive Intelligent S ystem s‟, Artificial Intelligence: Special
Issue on Agents and Interactivity(1995), 72, 329-365

Hermens, L. & Schlimmer, J.,(1994) ‟A M achine L earning A pprentice for the C om pletion of R epetitive
F orm s‟, Proceedings of the 9th IEEE Conference on Artificial Intelligence Applications, Orlando,
Florida: IEEE Press, pp. 164-170, 1994.

Hewitt, C . (1986), ‗V iew ing C ontrol S tructures as P atterns of P assing M essages‟, Artificial Intelligence
8(3), pp.323-364,1986.

H o lln agel, E rik (1993). ‗T he P henotype of E rroneous A ctions.‟ International Journal of Man-Machine
Studies, 39:1-32,1993.

Iba, W., G ervasio , M ., L an gley, P ., & Sage, S. (1998). ‗Experimental studies of intelligent assistance for
crisis response‟. Proceedings of the Twentieth Annual Conference of the Cognitive Science Society.
Madison, WI: Lawrence Erlbaum. IEEE Software , (1989)

Innocen t, P .R . (1982) ‗A self-adaptive user interface‟, International Journal of Man Machine Studies ,
Vol. 16(3) 287 – 300

Jenn in gs F ., B en yon D .R . an d M urray D .M . (1991) ‗Adapting Systems to individual differences in
cognitive style‟, Acta Psychologica,

Jenn in gs, F . & B enyon , D .R . (1992) ‗D atabase S ystem s: D ifferent Interfaces for different users‟

Jenn in gs, N . R (1995), ‗Chapter 6 - C oordination T echniques for D istributed A I‟, Foundations of
D istrib uted A rtificial Intelligen ce, G . M . P . O ‘H are and N . R . Jennings (eds.), John Wiley &
Sons, pp. 187-210, 1995.

Jennings, Alty et al (1996) „ADEPT: Managing Business Processes using Intelligent Agents’, Proc. BCS
Expert Systems 96 Conference (ISIP Track),Cambridge UK 1996

Jennings, N. R. & Wooldridge, M. J. (1998). ‗Applications of Intelligent Agents. In Agent Technologies:
Foundations, Applications, and Markets‘. N . R . Jen n in gs an d M . J. W oo ldridge (eds.)

 342

Jerrams-Sm ith , J. (1985) ‗SUSI -A smart user-system interface‘, In : P . Jo hnson and S. C oo k (E ds.),
People and Computers: Designing the Interface (Cambridge: Cambridge University Press).

Joh nso n, P . (1989) ‗S upporting S ystem D esign by analysing current task k now ledge‟, in Diaper, D. (ed.)
Task Analysis for Human-Computer Interaction. Ellis-Horwood

Jorg & Hormann (1978): Jo rg, S. & H o rm ann, H .: ‗The influence of general and specific labels on the
recognition of labeled and unlabelled parts of pictures‟. Journal of Verbal Leaning & Verbal Behaviour, 17,
445-454.

K ass, R . an d F in in, T . (1988) ‗The need for user models in generating expert system explanations‘,
International Journal of Expert Systems , Vol. 1(4).

K ass R . (1989) ‗Student modelling in intelligent tutoring systems‘. In : W . W ah lster an d A . K o bsa (E ds.)
op. cit.

Kay (1990) „U ser Interface: A P ersonal V iew ‟, In B. Laurel, ed., The Art of Human-Computer
Interface Design, Addison-Wesley, Reading, Mass., 1990

K ay, J. (1991) ‗U M : a toolk it for user m odelling‟, In Schneider-Hufschmidt, M., Kuhme, T. and
Malinowski, U. (eds.) Adaptive User Interfaces - Results and Prospects, Elsvier Science Publications,
North-Holland, Amsterdam.

Khalil C.I.J. (1999a) The Architecture of the AMEBICA Agent Based Adaptive Process Control Interface ;
18th European Annual Conference on Human Decision Making and Manual Control
Loughborough University, UK October 25th - 27th 1999

K h alil C .I.J (1999b); ‗AMEBICA - An Auto Adaptive Multimedia Environment Based on Intelligent
C ollaborating A gents‟ The Human Error and System Design and Management International
Workshop, March 24-26 1999, Clausthal Technical University, Germany

K ieras, D . an d P o lson, P .G . (1985) ‗An approach to the formal analysis of user Complexity‘, Intern ation al
Journal of Man Machine Studies , Vol. 22 (?).

K ob sa, A . (1987) ‗A taxonomy of beliefs and goals for user modelling in dialog Systems‘, M em o N r. 28,
Universitat des Saarlandes, Saarbrucken.

K ob sa, A . (1988) ‗A bibliography of the field of user modelling in artificial intelligence dialog systems‘, M em o
Nr. 23, Universitat des Saarlandes, Saarbrucken.

Kobsa, A . & W ah lster, W . (1989) ‗U ser m odels in dialog system s‟, Berlin: Springer-Verlag

 343

Lai K & T. Malone & K. Yu, (1988) „O bject L ens; A S preadsheet for C o-operative W ork ‟, , ACM Trans.
Office. Inf. Syst. 6,4 332-353

L an g, K . (1995). ‗NewsWeeder: Learning to Filter news.‘ P ro ceedin gs o f th e T w elfth Intern ation al
Conference on Machine Learning (pp. 331-339). Lake Tahoe, CA: Morgan Kaufmann.

L an gley, P ., & Sim on , H . A . (1995). ‗A pplications of m achine learning and rule induction‟,.
Communications of the ACM, 38, November, 55-64.

L an gley (1997), ‗M achine learning for adaptive user interfaces‟, in German Artificial Intelligence, p53-62,
Germany: Springer

L aurel, B . (1990) ‗Interface Agents.‘, In : B . L aurel (E d.) The Art of Human-Computer Interface Design,
Addison Wesley, Wokingham

Lehner, P.E. (1987) Cognitive factors in user/expert-system interaction, Human Factors, Vol. 29(1).

Lesser V & L. D. Erman (1980), „D istributed interpretation: A m odel and an ex perim ent‟, ‟Special Issue
on Distributed Processing, IEEE Trans. Comput. vol. C-29, pp. 1144)1163, December 1980.

L esser, V . & C orkill, D (1987), ‗F unctionally A ccurate, C ooperative D istributed S ystem s‟, IEEE
Transactions on Systems, Man, and Cybernetics C-11(1), pp. 81- 96. 1987.

L esser V .R (1998), ‗Reflections on the Nature of Multi-Agent Coordination and Its Implications for an Agent
A rchitecture‟,. Autonomous Agents and Multi-Agent Systems, 1, 89)111 1998 Kluwer Academic
Publishers.

Levitt et al (1994): Levitt, R., Cohen, P., Kunz, J., Nass, C., Christiansen, T. & Jin, Y., „T he
Virtual Design Team: Simulating how Organisational Structure and Communication Tools affect Team
P erform ance‟, Computational Organisation Theory, Carley, K.& Prietula, M. (eds.,) San Francisco:
Lawrence Erlbaum, pp. 67-91, 1994

Lind M., Osman A., Agger S., Jensen H. (1989), Human-Machine Interface For Diagnosis Based on
Multilevel Flow Modelling, Cognitive Science Approaches to Process Control: Proceedings of the
Second European Meeting, Siena, Italy, October 24

Lind, M. (1999). ‗M ak ing S ense of the A bstraction H ierarchy‟, Human-Machine Reliability and Co-
operation, 20-24 Septem ber 1999, V illen euve d‘A scq, L ille, F ran ce.

Maes, (1991) „Intelligence W ithout R epresentation‟, Artificial Intelligence 47, 139-159

 344

Maes, P. (1991) (ed), ‟D esigning A utonom ous A gents: T heory and P ractice from B iology to E ngineering and
B ack ‟, London, The MIT press, 1991.

M aes, P . & K o ziero k, R . (1993) ‗L earning Interface A gents‟, A A A I ‘93, C onference on A rtificial
intelligence, Washington

Maes P, (1994) „A gents T hat R educe W ork and Inform ation O verload‟, Communications of the ACM
37(7), 31-40

M aes & Sch neidem an (1997); M aes, P . an d Schneiderm an , B . (1997). ‗Direction manipulation vs.
interface agents: a debate‘. Interaction s, V o l. IV N um ber 6, A C M P ress.

M ason , M .V . & T hom as, R .C . (1984) ‗Experimental adaptive interfaces‘, In form ation T echno lo gy:
Research & Development , Vol. 3.

M ason , M .V . (1986) ‗Adaptive command prompting in an on-line documentation system‘, Intern ation al
Journal of Man-Machine Studies , Vol. 25

M ason , J. & E dw ards, J.L . (1988) ‗Surveying projects on intelligent dialogue‘, In tern atio nal Jo urn al o f
Man-Machine Studies , Vol. 28

M ayer & A n dersen (1991): M ayer, R . A nderson : ‗Animation Needs Narration: An experimental test of a
dual coding hypothesis‟: Journal of Educational Psychology, 83(4), 484-490.

M cC oy, K .F . (1989) ‗Highlighting a user model to respond to misconceptions.‘ In: W . W ah lster an d A .
Kobsa (Eds.) op. cit.

Minsky, M. (ed.) (1985), The Society of Mind, New York: Simon & Schuster, 1985.

Mitchell et al (1994) Mitchell, T., Caruana, R., Freitag, D., McDermott, J. & Zabowski, D.
(1994),‟E x perience w ith a L earning P ersonal A ssistat” Communications of the ACM 37 (7), pp. 81-91,
1994.

M oo re, J. & Sw arto ut, W .R . (1988) ‗Planning and reacting‘, P ro c, A A A I W orkshop on text p lann in g
and generation, August 25, 1988, St. Paul, Minnesota.

M o ran, T .P . (1981) ‗Command language grammar: a representation for the user interface of interactive computer
systems‘, Intern ation al Jo urn al of Man- Machine Studies , Vol. 15(3).

M o ran, T .P . (1983) ‗Getting into a system: external-internal task m apping analysis‟, In: R.N. Smith and
R .W . P ew (E ds.) P roceedin gs C H I‘83: H um an F actors in C om p utin g System s (A C M P ress).

 345

M o rik, K . (1989) ‗User models and conversational settings: m odelling the user‟s w ants‘. In : W . W ah lster and
A. Kobsa (Eds.) op. cit.

M urray, D .M . (1987a) ‗A survey of user modelling definitions and techniques‘, N P L D IT C R eport 92/87.

M urray, D .M . (1987b) ‗Embedded user models‘. In : B. Shackel and H-J. Bullinger (Eds.), Proc.
IN T E R A C T ‘87, Second IF IP C on ference on H um an -Computer Interaction, Amsterdam:
Elsevier Science Publishers B.V.

M urray, D .M . (1988) ‗Building a user modelling shell‘. in : P . Z unde (E d.), P ro c.6 th Symposium EFISS,
Georgia Tech., Atlanta, Georgia, USA, October 1988, New York: Plenum Publishing

M urray, D .M . an d B enyon , D . R . (1988) ‗M odels and designers tools for adaptive system s‟, presented at
4th European Conference on Cognitive Ergonomics (ECCE-4), Cambridge, U.K., September
1988.

M urray, D .M . (1989) ‗Modelling for adaptivity‘, P roceedin gs o f 8 th Interdisciplinary Workshop,
Informatics and Psychology, Scharding, Austria, May 1989 Amsterdam: North Holland.

N egroponte, N . (1989) ‗Beyond the desktop metaphor‘, In ternational Journal of HCI , Vol. 1(1).

N ew ell, A . (1982) ‗T he K now ledge L evel A rtificial Intelligence‟ 18(1) 87 127

N ielsen, J. (1986) ‗A virtual protocol model for computer-hum an interaction‟, in International Journal of
Man-Machine Studies , Vol. 24.

Nielsen, J. (1992), Usability engineering, Academic Press, 1992.

N o ah , W , & H alp in , S.M . (1986) ‗A daptive user interfaces for planning and decision aids in C H I system s‟,
IEEE Trans. SMC , Vol. 16(6).

N orcio , A .F . and Stan ley, J. (1989) ‗Adaptive human-computer interfaces: a literature study and perspective‘,
IEEE Trans. Systems, Man and Cybernetics ,Vol. 19(2).

N orm an, D . (1986) in N orm an , D . an d D rap er, S. (eds.) ‗U ser C entred S ystem D esign.‟

N orm an, D . A . (1990). ‗T he D esign of E veryday T hings‟, New York: Doubleday.

Nwana, H (1996) „S oftw are A gents an O verview ‟, Knowledge Engineering Review, Vol 11:3, 1996
p209

 346

Oppermann (1992) R. Oppermann, B. Murchner, H. Reiterer, M. Koch: „E rgonom ic E valuation.T he
G uide E V A D IS II‟ (in German), 2nd edition, de Gruyter, Berlin, 1992.

P aris, C .L . (1989) ‗The use of explicit user models in a generation system‘. In : W . W ah lster an d A . K ob sa
(Eds.) op. cit.

Parunak & H.Van Dyke (1996), „C ase G ram m ar: A L inguistic T ool for E ngineering A gent-based S ystem s‟,
1996.

Parun ak, H .V an D yke (1996), ‗G o to the A nt: E ngineering principles from N atural M ultiA gent S ystem s‟,
Annals of Operations Research (submitted), 1996.

Paraunak (1999) Practical and Industrial Applications of Agent-Based Systems, PAAM 1999 London

Payne, S.J. (1988) ‗Complex problem spaces: modelling the knowledge needed to use interactive devices,. In: B.
Shackel and H-J. B ullin ger (E ds.), P ro c.IN T E R A C T ‘87, Secon d IF IP C on feren ce on H um an -
Computer Interaction (Amsterdam: Elsevier Science Publishers B.V.).

Payne, S.K . & G reen, T .R .G . (1989) ‗Task Action grammar: The Model and Its developments‘. In
Diaper, D. (ed.) Task Analysis for Human-Computer Interaction. Ellis-Horwood

P azzan i, M ., & B illsus, D . (1997). ‗L earn in g and revisin g user pro files: T h e identification of
interestin g W eb sites‘. M ach ine L earn in g, 27, 313-331.

P edersen R . (1999): ‗A S ystem atic A pproach to D esign of P rocess D isplays‟, PhD. Thesis., Automation
Department, Technical University of Denmark.

P enn er, R .(1998) ‗Automating User Interface Design.‘ In P roceedings o f th e Intern ation al System s,
Man, and Cybernetics Conference. San Diego, California.

P o llack, M .(1985) ‗Information Sought And Information Provided. An Empirical Study of User/Expert
D ialogues‟. In P ro ceedin g o f C H 1‘85. H um an F acto rs in Computing Systems, ACM: New York

Pylyshyn, Z. W. (1984) Computation and Cognition MIT press, Cambridge,Ma.

R asm ussen, J. (1986) ‗Information processing and human-machine interaction‘, A m sterdam : E lsevier
North-Holland

Rasmussen, J. & Vicente, K. J. (1987), ‗Cognitive Control of Human Activities and Errors: Implications
For Ecological Interface Design‘, R esearch R eport (R iso -M-2660), Riso National Laboratory.

 347

R asm ussen, J. (1987) ‗Mental models and their implications for design‘, In :A ustrian C om p uter Society 6th
Workshop on Informatics and Psychology, June 1987.

Rasmussen, J., Petjersen, A.M and Goodstein, L.P (1994). Cognitive Systems Engineering. John Wiley.

R eason J. (1998), ‗Errors and Violations: the Lessons of Chernobyl‘, H um an F actors an d P o w er Plants:
Proceedings of the IEEE Fourth Conference Monterey,California 5-9 June, pp 537 – 540.

R eason J. (1992), ‗Human-Computer Interaction Is Not Enough: Considering Multi-Disciplinary Factors
Underlying Human Error‘, C SE R IA C G atew ay, III(3), pp 10 – 11.

R ekim o to (1996); ‗Transvision: A Hand-held A ugm ented R eality S ystem for C ollaborative D esign‟, Jun,
Virtual Systems and Multi-M edia (V SM M)‘96, 1996

R ich , E . (1979) ‗User modelling via stereotypes‘, C o gn itive Scien ce , V o l. 3.

R ich , E . (1983) ‗Users are individuals: individualising user models‘, Intern ation al Jo urn al o f M an
Machine Studies , Vol. 18

R ich , E . (1989) ‗Stereotypes and user modelling‘. In: W . W ah lster and A . K ob sa (E ds.) op. cit.

R ivers, R . (1989) ‗E m bedded U ser M odels. W here nex t?‟, Interacting with Computers, Vol. 1(1)

R o gers, S., & L an gley, P . (1998). ‗Interactive refinem ent of route preferences for driving‟, Proceedings of the
AAAI Spring Symposium on Interactive and Mixed-Initiative Decision-Theoretic Systems (pp.
109-113). Stanford, CA: AAAI Press.

R oth (1993) S.F . R oth , W .E . H efley, ‗Intelligent M ultim edia P resentation S ystem s: R esearch and P rinciples‟,
in M. Maybury M. (ed), Intelligent Multimedia Interfaces, AAAI Press, 13-58, 1993

R o use, W .B . et al (1989) ‗Intelligent Interfaces‘, H um an -Computer Interaction , Vol. 3

Sanderson P . M . (1989), ‗Supporting Emerging Human Roles in Advanced Manufacturing Systems:
Cognitive and Organizational Aspects‘, R esearch R eport (E P R L -89-08),University of Illinois at
Urbana-Champaign, Engineering Psychology Research Laboratory (EPRL), 1989

Sanderson P . M ., V erh age A . G ., F uld R . B . (1989), ‗State-Space and Verbal Protocol Methods For
Studying the Human Operator in Process Control‘, E rgonom ics,32 (11), pp 1343 - 1372, 1989

Schlimmer, J. C., & H erm en s, L . A . (1993). ‗Software agents: Completing patterns and constructing user
interfaces‟. Journal of Artifcial Intelligence Research, 1, 61-89.

 348

Schneiderman & M. McGill (1988) ; „D irect M anipulation: A S tep B eyond P rogram m ing L anguages‟, B.,
IEE Comput. 16, 8 (Aug 1988), 57-69

Searle, J.R. (1969) (ed.), „S peech A cts - An Essay in Philosophy of Language‘, C am bridge U n iversity
Press, 1969.

Seel, N . (1990) ‗From here to Agent Theory‘. A ISB Q uarterly, no. 72 Sprin g
Self J. (1986) ‗Applications of machine-learning to student modelling‘, Instructio nal Science, V o l. 14.

Self, J. (1987) ‗User modelling in open learning systems‘. In : J. W h itin g an d D . B ell (E ds.), T utorin g and
Monitoring Facilities for European Open Learning (Amsterdam: Elsevier Science Publishers
B.V.).

Sh ackel, B . (1990) ‗H um an F actors and U sability‟ in Preece, J. and Keller, L. (Eds.) Human-
Computer Interaction, Hemel Hempstead, UK: Prentice Hall

Sh ah idi A . K ., M cech an P ., T erriza J. (1990), ‗M4I Requirements For the SimulatorExemplar‘,
PROMISE ESPRIT Project 2397, PRO/HCI/34/1, Deliverable D40,1990

Sheth, B. & Maes, P. (1993), „E volving A gents for P ersonalized Inform ation F iltering,‟: Proceedings of
the 9th IEEE Conference on Artificial Intelligence for Applications, pp. 113- 121, 1993.

Shoham Y (1993) „A gent O riented P rogram m ing‟, Artificial Intelligence 60 (1) , 51-92

Sim on, H . A . (1969). ‗T he sciences of the artifcial‟ . Cambridge, MA: MIT Press.

Skinner B .F (1974); ‗A bout B ehaviorism ‟,. RandomHouse Inc, NewYork, 1974.

Sleeman, D . (1985) ‗UMFE: A user modelling front-end system ‟, International Journal of Man Machine
Studies , Vol. 23

Smith, S.L., & Mosier, J.N. (1984), „D esign G uidelines for the U ser Interface S oftw are‟, Technical Report
ESD-TR-84-190 (NTIS No. AD A154 907), U.S. Air Force Electronic Systems Division,
Hanscom Air Force Base, Massachusetts, September 1984.

Soh ier C ., B ertels A . (1992), ‗Task Analysis Model‘, P R O M ISE E SP R IT P ro ject 2397,D o cum en t
No PRO/KUL/71.

Stanfill C. & D. Waltz (1986) „T ow ards M em ory B ased R easoning‟, , Comm. ACM 29,12,(Dec. 1986),
1213-1228

 349

Steels, L . (1987) ‗T he deepening of E x pert S ystem s‟, AICOM, No 1, 9-16

Steho uw er, M . & V an B ruggen , J. (1989) ‗Performance interpretation in an intelligent help system‘. In :
Proc. 6th Annual ESPRIT Conference, Brussels, November 1989 (Kluwer Academic
Publishers).Schneider-Hufschmidt, M., Kuhme, T. and Malinowski, U. (eds.) (1993)Adaptive User
Interfaces - Results and Prospects, Elsvier Science Publications,North-Holland, Amsterdam

Sukaviriya, P., Foley, J (1993). ‗Supporting Adaptive Interfaces a Knowledge-Based User Inter-face
E nvironm ent‟ . In: Gray, W. D., Hefley, W. E., Murray, D. (eds.): Conf. Proc. International
Workshop on Intelligent User Interfaces. Orlando, FL. New York. ACM Press. (1993) 107-114

Sullivan & S.W.Tyler (1991) „Intelligent U ser Interfaces‟‘,A C M P ress N .Y .

Swezney (1991) Swezeny, R W „E ffects of Instructional S trategy and M otion P resentation C onditions on the
A cquisition and T ransfer of E lectrochem ical T roubleshooting S k ill‟; Human Factors 33,3, 309-323

Sycara K ., (1995) ‗Intelligent A gents and the Inform ation R evolution‟, In: UNICOM Seminar on
Intelligent Agents and their Business Applications 8-9 November, London 1995, 143-159

T an g, H ., M ajor, N ., an d R ivers, R . (1989) ‗From users to dialogues‘. In : L . M acauley an d A . Sutcliffe
(Eds.) People and Computers V (Cambridge: Cambridge University Press).

T h im b leb y, H . (1990a) ‗Y ou‟re right about the cure - don‟t do that‘, Interactin g w ith C om p uters , V o l.
2(1).

Thimbleby, H. (1990b) ‗U ser Interface D esign‟, (Wokingham: Addison Wesley).

T ho m as, R .C ., B enyon , D .R ., K ay, J. and C raw fo rd, K . (1991) ‗Monitoring Editor Usage: The Basser
Data Project‘, in pro ceedin gs o f N C IT ‗91 P en an g.

T illey,K .J (1996), ‗Chapter 9 - Machining Task A llocation in D iscrete M anufacturing S ystem s,‟ Market-
based Control, Scott H. Clearwater (ed.), World Scientific, pp.224-251, 1996.

T o tterdell, P .A , N orm an, M .A . an d B row ne, D .P . (1987) ‗Levels of adaptivity in interface design‘. In: B .
Shackel and H-J. B ullin ger (E ds.), P ro c. IN T E R A C T ‘87, Second IF IP C on ference on H um an -
Computer Interaction (Amsterdam: Elsevier Science Publishers B.V.).

T o tterdell, P .A . & C ooper, M . (1986) ‗D esign and evaluation of the A ID adap tive front-end to
T elecom G o ld.‘

Trigg, R., M o ran, T ., and H alasz, F . (1987). ‗Adaptability and Tailorability in NoteCards‘, in B ullin ger
and Shackel (Eds.) Proc. INTERACT `87, North-Holland, 1987

 350

Van der Veer, G.C (1990) „H um an -Computer Interaction. Learning, individual differences and design
recom m endations‟, Offsetdrukkerij Haveka B.V., Alblasserdam;

V icen te, K . & W illiges, R .C ., (1988) ‗Visual Momentum as a means of accommodating individual
differences among users of a hierarchical file system‘. In: J. R asm ussen an d P . Z unde (E ds.), P ro c. 5th
Symposium EFISS, Risø National Laboratory, Denmark, November 1987 (New York: Plenum
Publishing).

V icen te, K . J. & R asm ussen , J. (1990), ‗The Ecology of Human-Machine Systems II: Mediating 'Direct
Perception' in Complex Work Domains‘, E co lo gical P sychology, 2 (3), pp 207 - 249, Lawrence
Erlbaum.

V icen te, K . J. (1991), ‗Supporting Knowledge-Based Behavior Through Ecological Interface Design‘, R esearch
Report (EPRL-91-01), University of Illinois at Urbana-Champaign, Engineering Psychology
Research Laboratory (EPRL).

V icen te, K .J. & W illiges, R .C . (1987). ‗Assaying and isolating individual differences in searching a
hierarchical file system‘, H um an F actors , V o l. 29, 349-359.

V icen te, K .J. & W illiges, R .C . (1988). ‗Accommodating individual differences in searching a hierarchical file
system ‘, In tern ational Jo urn al o f M an -Machine Studies ,Vol. 29.

W ah lster W . an d K ob sa A . (1987) ‗Dialogue-based user models‘, P roc. IE E E V o l. 74(4).

W icken s C .D . (1984) ‗E ngineering P sychology and H um an P erform ance‟, Charles E Merrihill Publ.

W icken s C . D . (1992), ‗Engineering Psychology and Human Performance (2nd Ed)‘, H arper C o llins
Publishers Inc.

W ilen sky, R ., A ren s, Y . and C h in D . (1984) ‗Talking to Unix in English: an overview of UC ‘,
Communications of the ACM , Vol. 27(6).

W illiges, R .C . (1987) ‗The use of models in human-computer interface design‘, E rgo nom ics , V o l. 30(3).

W ilson, M .D ., B arn ard, P . J, G reen, T .R .G . an d M aclean , A . (1988) ‗Task Analyses in Human-
Computer Interaction‘. In : C .C . van der V eer, T .R .G . Green, J.M. Hoc and D.M. Murray (Eds.)
Working with Computers: Theory versus Outcome, (London: Academic Press).

W oo ldridge & N .R .Jenn in gs (1995) ‗Intelligent agents: Theory and Practice‘. The Knowledge
Engineering Review, 10(2):115-15

 351

Wooldridge, M. (1995), ‗C onceptualising and D eveloping A gents‟, Proceedings of the UNICOM
Seminar on Agent Software, 25-26 April, London, pp. 40-54, 1995.

Y o un g, R . M . an d H ull, A . (1982) ‗C ategorisation structures in hierarchical m enus‟, in Proceedings of 10th
International Symposium on Human Factors in Telecommunications, Helsinki. pp 111 – 118

Zissos, A. & Witten, I., I. (1985) „U ser m odelling for a com puter coach: a case S tudy‘, Intern ation al
Journal of Man-Machine Studies, Vol. 23.

(URL1) Network Computer World, January 1998.
(URL2) http://www.symantec.co.uk/region/uk/product/inettools/vcafepde.html
(URL3) http://java.sun.com:81/products/hotspot/index.html
(URL4) http://www.alphaWorks.com
(URL5) http://www.zdnet.com/pcweek/reviews/0623/23hpj.html
(URL 6) http://www.twr.com/
(URL7) http://www.instantiations.com/jove.htm
(URL8) http://www.jivetech.com/redshift/product-brief.html
(URL9) http://www.idg.net/idg_frames/english/content.cgi?vc=docid_9-69514.html
(URL10) PC Magazine Java Speed Trials Graphic Threads 10/22/96
(URL11) http://www.volano.net/guide/mark.html
(URL12) http://www.borland.com/jbuilder
(URL13) http://www.asymetrix.com/products/supercede
(URL14) http://www.asymetrix.com/products/supercede/news/benchmarks.html
(URL15) http://www.zdnet.com/products/stories/reviews/0,4161,293221,00.html
(URL16) http://www.agentbuilder.com/
(URL17) http://www.ececs.uc.edu/~abaker/JAFMAS/
(URL18) http://java.stanford.edu/java_agent/html/
(URL19) http://www.networking.ibm.com/iag/iagsoft.htm
(URL20) http://www.crim.ca/sbc/english/lalo/
(URL21) http://www.iks.com/agentx.htm
(URL22) http://www.infosys.tuwien.ac.at/Staff/lux/Gypsy/
(URL23) http://www.agent-software.com.au/jack.html
(URL24) http://www.fujitsu.co.jp/hypertext/free/kafka/
(URL25) http://www.kinetoscope.com/via/default.htm

http://www.symantec.co.uk/region/uk/product/inettools/vcafepde.html
http://java.sun.com:81/products/hotspot/index.html
http://www.alphaworks.com/
http://www.zdnet.com/pcweek/reviews/0623/23hpj.html
http://www.twr.com/
http://www.instantiations.com/jove.htm
http://www.jivetech.com/redshift/product-brief.html
http://www.idg.net/idg_frames/english/content.cgi?vc=docid_9-69514.html
http://www.volano.net/guide/mark.html
http://www.borland.com/jbuilder
http://www.asymetrix.com/products/supercede/news/benchmarks.html
http://www.asymetrix.com/products/supercede/news/benchmarks.html
http://www.zdnet.com/products/stories/reviews/0,4161,293221,00.html
http://www.agentbuilder.com/
http://www.ececs.uc.edu/~abaker/JAFMAS/
http://java.stanford.edu/java_agent/html/
http://www.networking.ibm.com/iag/iagsoft.htm
http://www.crim.ca/sbc/english/lalo/
http://www.iks.com/agentx.htm
http://www.infosys.tuwien.ac.at/Staff/lux/Gypsy/
http://www.agent-software.com.au/jack.html
http://www.fujitsu.co.jp/hypertext/free/kafka/
http://www.kinetoscope.com/via/default.htm

 352

APPENDIX A: INTEGRATED DEVELOPMENT
ENVIRONMENTS

JBuilder 2
JBuilder 2 (URLURL12) delivers an excellent interface, strong distributed computing options and

powerful two-way programming tools.

Features
Debugger: JBuilder 2 includes an integrated set of tools for which aid debugging. The IDE gives

easy access to panes of information on Threads, the Stack, Data, an Inspector, and an expression

evaluation dialog

R M I an d C O R B A Support: JB uilder 2‘s suppo rt for distrib uted co m ponen ts is stron g. It h as

support for distribution of components through CORBA and RMI. To aid the developer in

using these systems JBuilder 2 has a powerful wizard that helps the process. The CORBA wizard

works with some input from the developer to create an Interface Definition Language (IDL) file

from the Java class, and can quickly compile the IDL file to complete the process. RMI is

deployed through a similar wizard: They are almost identical, except for the generated output.

Database Support: JBuilder 2 includes InterBase database server and DataGateway middleware.

This provides a set of tools for building a sophisticated Java solution.

JBuilder 2 provides a fast compiler that uses its proprietary Smart Dependencies Checking

technology (SDC). The SDC results in fewer unnecessary compiles of interdependent source

files, which in turn shortens subsequent edit/recompile cycles. When compiling, JBuilder 2

analyses the nature of the changes made to source files. Instead of deciding whether to recompile

a source file based only on the time stamp of the file. A source file is recompiled only if it uses

(or depends on) a particular element that has changed within another source file. The

 353

dependency checker only flags a file for recompilation if a method signature or data member

changes. This allows the addition of comments to code or the ability to change a method body

without recompiling the entire application.

 \JITtoDo\JITDone\JBUILER.HTM C\J

Asymetrix Supercede
SuperCede (SC) (URL13) is the only tool that allows the use of pure Java to create Java byte code

applets or applications, and still allow the creation of native binary executables, thus saving extra

money on obtaining a native compiler.

Features
Built in Native Compilation option: The unique advantage of SuperCede is that it supports pure

Java solutions that allow the generation and compilation of Java code to SuperC ede‘s h igh ly

optimised Java virtual machine (VM). The SuperCede Java VM can be used to compile code on

the fly or as a Web browser plug-in. The SuperCede VM provides a high-performance Java

runtime program that boosts the performance of Java to C++ speeds. Asymetrix claims

performance that is 50 times better than interpreted Java and up to 5 times better performance

than the best just-in-time (JIT) Compiler and Builders. See (URL14) for more information on their

claims.

Debugger: SuperCede has a two additional and powerful features called trace points and action

points. Trace points are set like breakpoints, except messages can be output to the debug window

instead of stopping execution. Action points allow the programmer to execute a piece of code

each time a specified point is reached, without necessarily halting the execution of the program.

L ib raries: A sym etrix h as b un dled a n um ber o f other libraries w ith SC . T hese include N etscap e‘s

In tern et F o un dation C lasses (IF C), O b jectSp ace Inc.‘s Java G eneric L ib rary (JGL), and Object

D esign Inc.‘s O b jectStore P ersistent Storage E n gin e (P SE).

 354

C++ Integration: Supercede implemented its Java and C++ classes using the same object model,

and therefore provides seamless integration with C++. This facility is useful in creating Java

wrappers for C++ programs or C++ wrappers for Java programs, so that either can call the

other. Using SuperCede C/C++ code can be called directly, or by using the more complicated

Java Native Method scheme. With the included support for C++ legacy code, it is possible to

leverage existing code base and expertise.

Symantec Visual Cafe
V isual C afé (U R L 2) is h eavily used in both academ ia an d industry, and is reno w ned for it‘s ease

of use and intuitive user interface.

Features

 Compiler: Symantec‘s JIT (Just-In-Time Compiler and Builder) claims to be the fastest in both
com pile and runtim e in the industry and is now included in JavaSoft‘s JD K 1.1 as the
Performance Runtime for Windows. Visual Cafe project management is also among the best.
Projects can contain sub-projects, and developers can call batch files to perform custom
functions, such as call other tools. Visual Cafe integrates easily with several popular configuration
management tools, including SCCS and RCS.

 D ebugger V isual C afé‘s debugger is full-featured, and has remote debug capability— that is, the
developer can actually debug Java that is running in another machine. The debugger is tightly
integrated with the Java virtual machine, allowing Java code on the fly to be entered and the
results examined.

 Libraries: VC includes about 100 visual components beyond the basic AWT widgets. One
valuable feature is that users can add their own objects to the tool palette— a feature exclusive to
VC at this time.

 355

C om p arison O f Java ID E ’s.
The following results were obtained from (URL15)

Output File

Output File Sizes of a Sample Java Application
Bytes - Lower score is better

CodeWarrior Professional 2.0 35,152
JBuilder Client/Server Suite 41,6 89

Sun Java WorkShop 2.0,native 40,403
Sun Java WorkShop 2.0,fast

compiler 50,145

Sybase PowerJ Enterprise 2.0 34,140
Sybase PowerJ Enterprise 2.1 34,477

VisualAge for Java 1.0 34,501
Visual Café for Java 2.1,optimized 35,476

Visual Café for Java 2.1,unoptimized 41,689

Table 25: Output File Sizes of Sample Java Application

 356

N/A— Not applicable: The product does not have a discrete compile step.
Table 26: Compile Times for Native Compiler

Conclusion
For ease of use and power the choice comes down to JBuilder 2 and Visual Café. Of these two,

JBuilder 2 best fits the agent developers needs on several fronts. First it is 100% pure Java

compliant and can therefore integrate with JDK1.2. Secondly, it has interface support tools for

Swing and lastly it has excellent support for the distributed application utilising its client/server

paradigm, fully supporting RMI and CORBA. Additionally, the supplier Inprise has bundled its

excellent VisiBroker libraries with JBuilder 2, which allow easy integration of applications into a

CORBA environment.

The tables above illustrate that on performance alone, there is no significant difference between

the two packages. Unlike Visual Café, JBuilder 2 offers high-end features, like explicit transaction

pro cessin g an d full record n avigation in data aw are P ure JD B C ™ -compliant Java components.

Compile Times for Native Compiler
Full debug build

Partial debug build
Chess Application Seconds

- lower score is better
JMark 1.02Seconds - lower

score is better

CodeWarrior Professional 2.0 6.5
4.4

9.4
5.2

JBuilder Client/Server Suite 1.9
0.8

1.8
0.8

Sun Java WorkShop 2.0,native 8.7
6.1

10.1
6.4

Sun Java WorkShop 2.0,
optimised

2.2
1.7

2.8
2.2

Sybase PowerJ Enterprise 2.0 6.2
6.4

8.2
8.4

Sybase PowerJ Enterprise 2.1 8.6
2.7

8.6
3.8

VisualAge for Java 1.0 N/A N/A
Visual Cafe for Java 2.1,Database

Development Edition
1
1

1.3
1.2

 357

One of the primary elements of any agent environment is a fast compiler. The advanced Java

compiler in JBuilder 2 has two features that are not available in Visual Café: SmartChecker for

smart dependencies checking, and a source code obfuscator for code protection.

The Jbuilder 2 also includes a source code obfuscater that Visual Café does not, that makes it

more difficult to reverse-engineer byte-code Java class files.

Visual Café and JBuilder 2 both have excellent professional debuggers with similar features.

However, JBuilder 2 provides an especially powerful tool, which will be very useful within any

agent project, a multi-thread debugger. JBuilder 2 can do this by switching from one thread to

another using the Thread/Stack pane in the AppBrowser while debugging. The breakpoints can

be set to be active only for a certain thread.

Thus the recommendation here is to use JBuilder 2, which has most of the main features an

agent developer requires of an IDE. These features are summarised below:

Integrated RMI and VisiBroker CORBA/IIOP development tools: With its CORBA and

RMI integration, JBuilder 2 makes it easier to build and deploy distributed applications in

heterogeneous environments.

Integrated Version Control is pro vided by Interso lv‘s m arket-leading PVCS Version Manager, to

help manage team development. Visual Café includes Starbase for version control.

SQL Explorer enables developers to browse, modify and manage data on SQL databases like

Oracle, Sybase, Microsoft SQL Server, DB2, Informix, and InterBase.

SQL Builder is a graphical SQL query tool that automatically generates ANSI SQL-92 queries.

SQL Monitor enables developers to view the execution of SQL queries for performance tuning

and testing.

 358

DataGateway for Java provides developers with a multi-tier, fast and reliable database

connectivity solution adhering to the industry standard, JDBC. This provides native connectivity

to Oracle, Sybase, DB2, Microsoft SQL Server, Informix, Borland InterBase, Paradox, dBase,

FoxPro, and MS-Access; plus, additional connectivity through standard ODBC drivers; providing

more native connectivity options than any other middleware product in the market, including

Symantec dbANYWHERE.

 359

APPENDIX B: AGENT TOOLKITS

Agent Builder
Summary Of Features
AgentBuilder (URL16) is an integrated tool suite for constructing intelligent software agents.

AgentBuilder consists of two major components - the Toolkit and the run-time System. The

AgentBuilder Toolkit includes tools for managing the agent-based software development

process, analysing the domain of agent operations, designing and developing networks of

communicating agents, defining behaviours of individual agents, and debugging and testing agent

software. The run-time system includes an agent engine that provides an environment for

execution of agent software.

Agents constructed using AgentBuilder communicate using KQML. In addition, AgentBuilder

allows the developer to extend the standard KQML performatives to include any additional

performatives deemed necessary.

All components of both the AgentBuilder Toolkit and the run-time System are implemented in

Java. Likewise, the agents created with the AgentBuilder Toolkit are Java programs so they can be

executed on any Java virtual machine.

The AgentBuilder toolkit is designed to provide the agent software developer with an integrated

environment for quickly and easily constructing intelligent agents and agent-based software.

Conclusion
This commercial agent toolkit is largely aimed at the enterprise market in non-time critical

situations. It has many good features including support for the difficult task of designing and

defining individual agent behaviour, as well as system behaviour. To this end it includes a highly

useful Ontology Manager and tools to help define the agent rule base (for planning and learning).

 360

In addition, and perhaps one of its most useful features, AgentBuilder provides, as part of its

Agent Manager an agent visualiser so that agent interactions can be tracked to aid system

debugging. Also, it has an Agent Debugger to monitor and communicate with executing agents.

AgentBuilder is based upon, but not restricted to, the strong notion of agency and thus agent

behaviour is defined in terms of beliefs, desires and intentions.

AgentBuilder appears to be a fine toolkit, it satisfies many assessment criteria, it is KQML

compliant, pure Java and is FIPA compliant (At least it appears to be, its Agent Manager looks to

be equivalen t to F IP A ‘s D irecto ry F acilitato r A gent). A lso its agent m an agem ent too ls are a

tremendous asset as they save the developer building their own debugging agents. However, it

does not appear to be widely used in the agent community. Perhaps this is because Reticular

systems do not provide evaluation copies, and the system costs around $900. As a result the

toolkit was unavailable for evaluation.

The only doubts that can be raised against this agent toolkit are the runtime performance of its

agent engine. Each agent makes decisions based on its rule base, AgentBuilder allows simple

construction of these rules, however at runtime they are marshalled by a central Inferencing

Engine, which can conceivably leads to additional lags in communication times. There are no

official figures on the speed of interactions, and without trying the actual program, it is difficult

to assess its throughput speed and KQML parsing. However, it is believed that the agent engine

runs on one iteration per millisecond. Much of this commentary is supposition since the toolkit

was not tested.

Overall, on paper this is the one of the best toolkits around, but there could performance and

scalability problems.

FOR: FIPA Compliant, KQML Compliant, Agent Debugger, Agent Visualiser, Agent Project

Management, Ontology Manager, Ability to implement Planning and Learning facilities, Provides

Communications Platform, Pure Java.

 361

AGAINST: Performance, Scalability, and Price.

JAFMAS
Summary of Features
JAFMAS (URL17) provides a framework to guide the development of multi-agent systems,

together with a set of classes for agent deployment in Java. The framework is intended to help

developers structure their ideas into concrete agent applications. It directs development from a

speech-act perspective and supports multicast and directed communication, KQML or other

speech-act performatives and analysis of multi-agent system coherency and consistency.

Conclusion
JAFMAS along with JATLite is one the most popular agent tools in the academic community,

although it appears to be rapidly losing ground to its competitor. This can be attributed to a

number of factors, not least the multitude of bugs that seem to crop up on a regular basis. In

addition although it supports the use of speech-act performatives it does not inherently use the

KQML standard, which could be a problem.

That point aside, the important feature of JAFMAS that distinguishes it from traditional systems

that require some sort of Agent Name Server (ANS), is that JAFMAS offers a unique multicast

facility. The infrastructure allows agents to establish connections with each other, and establish

each other‘s identity, by usin g m ulticastin g (distin ct from bro adcastin g) without the use of any

central registry such as an ANS. This is an important point because this kind of architecture is

better suited for a closed system where all the agents know who they need to communicate with.

Advantages include RMI based communication A P I‘s an d a w ell-developed agent architecture.

Disadvantages with JAFMAS included being very hard to get set-up and working correctly. The

current version seems to be bug ridden, and requires deep knowledge of RMI to get working.

 362

FOR: Scalable, Fast, Supports peer-to-peer communication, Comes in the form of standard Java

packages, support speech-act performatives, Pure Java.

AGAINST: Difficult to set up, unreliable, no direct support for KQML, Basic in form, relies

so lely on Java‘s b uilt in security m echanisms.

JATLite
Summary of Features
JATLite (URL18) takes the form of a set of Java packages and a Java runtime router. JATLite

provides a basic infrastructure in which agents register with an Agent Message Router facilitator

using a name and password to connect/disconnect. Once connected to the router, agents are

able to send and receive messages, transfer files, and invoke other programs or. JATLite fully

supports the KQML standard, and provides a robust lightweight communications platform, with

in-built FTP and SMTP extensions. JATLite in based on the client/server mechanism and was

built, primarily, to be used with Applets rather than Applications. However, it works equally well

with either.

Conclusion
JATLite, like JAFMAS is notoriously difficult to install and requires significant network

experience to set-up. However, once running it affords a flexible and useful agent infrastructure.

JATLite is, probably, the most widely used agent toolkit within the Agent research community.

It is quite well supported and new extensions to its functionality appear quite regularly.

Unlike JAFMAS, JATLite uses a centralised router to direct communication between the agents.

The JATLite router does have a unique robustness feature. It buffers all messages. An agent can

therefore retrieve all outstanding messages - in fact, all messages that it has not explicitly deleted.

The author has used JATLite for some time now and would recommend it as an agent platform

in the general sense. However, serious doubts can be raised about its performance in a real time

 363

system, where the KQML parser in the router would hinder the timely delivery on messages.

Having talked to some of its developers about this issue, it was discovered that a new faster

KQML parser is due for release soon.

FOR: KQML Compliant, FIPA Compliant, Robust communications platform, well supported,
Pure Java.
AGAINST: Difficult to set-up, Slow KQML parser, Uses centralised router

IBM-ABE
Summary of Features
IB M ‘s A gent B uilding E n viro nm ent (A B E) (U R L19) provides a communication infrastructure

and an inference engine to dictate agent behaviour. In the current version, the intelligent agent

watches for a certain condition, and decide what to do based on a set of rules, and triggers an

action as a result.

The architecture for the agent is based on reasoning engine, and adapters that allow the agent to

interact with the rest of the world. The developer can construct custom adapters to interface with

custom applications or legacy systems.

Conclusion
The ABE places a great emphasis on providing a set of tools to develop the functionality of an

autonomous agent. In this way it is similar to AgentBuilder, at its core lies an inference engine,

which allows the agent to react to changes in the environment according to its rule set. Where it

falls down is its lack of support for KQML and ontology checker.

The ABE is similar in some ways to AgentBuilder except that it is far less useful. One of its

redeeming features is the number of adapters (API extensions) that let the agent interact with

other systems. Other than that it was found that the system was very difficult to get running, and

 364

the architecture was muddled and convoluted. In addition, the inference engine was slow and its

rule builder software was crude and unreliable.

FOR: In-built rule and planning facility, Useful adapters.

AGAINST: VERY difficult to get running, messy architecture, slow inference engine, crude rule

builder.

LALO
Summary of Features
LALO (URL20) is a programming environment, which permits the development of multi-agent

systems. The architecture is extensible and allows the creation of multi-agent systems including

reactive agents and deliberative agents. The inter-agent communication language is KQML. A

program written in LALO is translated into C++ source code, and then compiled with a C++

compiler.

Conclusion
LALO is a good agent infrastructure but is let down by not being Java compliant. In addition, an

inherent part of AOP is the strong notion of agency and therefore includes the BDI model

(Beliefs, Desire and Intentions). Within the scope of many multi-agent projects, the weak notion

of agency is used, whereby developers do not imbue their agents with BDI concepts, rather the

system gains value through the combined interactions of a number of simple agents.

FORS: Flexible architecture, established, FIPA compliant.

AGAINST: Written in C++, uses strong notion of agents.

 365

Agent X
Summary of Features
Agent X (URL21) provides distributed computing libraries that support object request broker,

RMI and mobile agent services written in Java. The libraries were designed to provide object

request broker facilities that were easier to use and more functional than the RMI libraries

bundled with the Sun JDK

AgentX also provides programming support for the creation and release of autonomous mobile

agents

Unlike RMI and CORBA AgentX does not require that stubs or skeletons be created, or that any

IDL be written.

The only requirement is that an AgentX server application be run on a machine that will respond

to RMI and mobile agent requests. The server component uses only a single TCP/IP port to

efficiently handle both types of requests.

Conclusion
AgentX is a commercial package that provides a very good communications infrastructure. Its

use of normal Java API packages as tools for communication provides one with an instantly

understandable and efficient transport mechanism. This tool is relatively new and not very well

supported. Its communication platform improves on RMI.

FOR: Easy to use communications platform, very lightweight, scalable, FIPA compliant.

AGAINST: Targeted for use in mobile agent market, little support. Offers little else in agent

functionality. No KQML support.

 366

Gypsy
Summary of Features
Gypsy (URL22) is a project investigating mobile agents, but it does include within its framework

the ability to support a lightweight communications infrastructure, due to its support of RMI and

a CORBA like registry, it includes the following features:

 JavaBean mobile agents (supervisor/embedded/normal).

 JavaBean places as special mobile agents.

 RMI and CORBA IIOP communicators.

 CORBA Mobile Agents MAF like registry using RMI.

 Secure JAR classloader & security manager.

 GUI remote administration and configuration tool.

Conclusion
The prime motivation for this toolkit is not to support a multi-agent framework as traditionally

envisaged, rather to implement a toolkit that provides roving agents over an open network.

Further, it does not include any support for KQML or have any active guidelines on

developm ent. It‘s co m m un icatio ns p latform is relatively difficult to get to grip s w ith, and is

completely set-up for use with mobile agents.

FOR: GUI tools, support for Java Beans.

AGAINST: For use with Mobile agent systems, communications platform is an extension of

RMI and provides little in the way of ease of use, no KQML support.

 367

Jack Agent Toolkit
Summary of Features
Jack (URL23) proves an in-built architecture based on a communications infrastructure. Thus, it

is a lightweight architecture that allows the developer to build whatever types of agents they

require on top of the base kernel.

Features:

 Allows easy integration using standard infrastructure, such as CORBA, RMI, HLA or
DCOMM.

 Has a language specification and object oriented design targeted to allow easy extension for new
agent models

 Uses JACK Agent Language, JAL, which follows the standard JAVA/Object Oriented
paradigm.

 Includes user interfaces for the development and debugging of agent applications.

 T he Jack A gent L anguage reduces the learning curve and JA C K ‘s type-safe and object-oriented
approach assists in developing more reliable applications.

 Is extremely lightweight - is designed to handle hundreds of agents running on low-end
hardware.

Conclusion
JACK seems to provide a very good solution to many difficult agent problems. Its

communications mechanism is lightweight. It offers an agent language which is an extension of

Java and therefore intuitive and easy to use. Further, unlike many agent toolkits it includes an

agent debugger, which is a very useful addition.

Unfortunately, further comment cannot be made on this toolkit, as information on JACK is

available only via email with the company itself. Several emails were sent to Agent-Oriented

 368

Software and, as of yet, no reply has been received. Thus without the software to hand it is hard

to judge its use. However the author did get in contact with someone who has been involved in

some consultancy on JACK and was told that it contains some excellent libraries for assigning a

single agent to handle multiple threads.

FOR: Formal agent language, debugger, good communications platform, pure Java, very

scalable.

AGAINST: Not widely used, hard to obtain and test software. No KQML implementation.

Kafka Agent Library
Summary of Features
K afka (U R L 24) is b ased on Java‘s R M I and h as th e follo w in g features:

 Runtime Reflection:

 Agents can modify their behaviour (program codes) at runtime. The behaviour of the agent is
represented by an abstract class Action. It is useful for remote maintenance or installation
services.

 Remote Evaluation:

 Agents can receive and evaluate program codes (classes) with or without the serialized object.
Remote evaluation is a fundamental function of a mobile agent and is thought to be a push
model of service delivery.

 Distributed Name Service:

 Agents have any number of logical names that do not contain the host name. The distributed
directories can manage these names.

 Customisable security policy

 A very flexible, customisable, 3-layered security model is implemented in Kafka.

 369

 100% Java and RMI compatible:

 Kafka is written completely in Java. Agent is a Java RMI server object itself, so agents can
directly communicate with other RMI objects.

Conclusion
Kafka provides very lightweight support for multi-agent architectures in the form of Java API

libraries. The libraries are imported in the form of packages and used as normal Java classes. It

does provide fast, scalable support for an agent system. However, it does not have any support

for KQML or for higher-level agent functions.

Kafka is not really an agent toolkit; rather a collection of packages, which aid agent designers by

providing custom, classes for dealing with a distributed collection of objects. The libraries are

not well chaptered and operate at a low level. Kafka requires a good deal of familiarity with RMI

an d distrib uted com p utin g. T h e very fact th at th ese A P I‘s op erate at a lo w level m eans Kafka

offers a good deal more flexibility than most toolkits, as many layers can operate above the Kafka

level. In terms of use within agent projects, this may not be the toolkit of choice. However, the

beauty of Kafka is that agent developer can selectively integrate som e of its m o re useful A P I‘s

within any other agent toolkit used (as long as they are based on RMI). Thus the reflection

library could provide a very valuable addition for an agent developer.

FOR: Flexibility, reflection API, very lightweight communications platform, pure Java, based on

Java packages, collection of libraries.

AGAINST: Badly chaptered requires good knowledge of RMI. Not user friendly.

 370

Via Agents.
Summary of Features
Via (URL25) is a commercial agent package for development of multi-agent systems. It provides

the following features:

 The Via agent server: V ia‘s A gent M anager server m anages all agent activity w hile agents are in
the field. T he prim ary advantages of V ia‘s A gent M anager are that it is cross-platform, scalable,
and persistent.

 Pre-Built Client GUIs: Via comes with customisable end-user interfaces for dynamically
creating, controlling and describing the behaviour of agents in the network.

 Multiple sensory and action modules: A com plete set of agent ―tasks‖ and agent ―actions‖ allow
agents to interact with on-line resources such as databases, LDAP directories and Web sites, and
communicate with users.

 Notification capabilities: Via includes a suite of ready-to-use telecommunications capabilities
which allow users to receive notifications eight different ways - through text-to-speech based
telephony, alphanumeric pager messages, e-mail messages, changes to HTML pages, faxes, Java
client G U Is and using ―push‖ channel technology in M icrosoft‘s and N etscape‘s brow ser
products.

 The Via System API (VSAPI): VSAPI allows developers to create custom agents and to extend
and modify the agents and agent capabilities that come with the Via System.

Conclusion
Via appears to be a very useful client/server suite, and has been designed to offer services,

directly, to various users over an Intranet. Thus, the whole configuration is set-up on a user-

agent basis rather than an agent-agent basis. In essence, Via agents perform tasks on behalf of

the user directly (Such as search web pages, filter email etc) and interact with their direct

environment rather than other agents (although they do have this capability).

Users can apply changes to agents directly via the GUI that is provided by Kinetiscope. This

severely limits the developers ability to set-up a custom GUI. Users can alter the behaviour of

their agent by http, cgi etc. This is a rather good agent toolkit, but sadly it is too rigid in its

 371

format for common use. Because the whole toolkit is set-up for direct interaction with the user,

it would be of little use when trying to define agent-agent interactions. Predominantly this is

because Via agents can only interact with their environment via SMTP, HTTP etc and not faster

more reliable protocols such as TCP/IP or UDP.

FORS: Simple to use, simple architecture, good array of added agent functionality

(F T P ,E M A IL ,C D F ,N N T P), w ell designed G U I‘s, rob ust.

AGAINST: VERY inflexible. No support for TCP/IP. Can only use pre-defin ed G U I‘s. N o

inter-agent communication supported.

Object Space Voyager
Summary of Features
Voyager (URL26) is a 100% Java agent-enhanced Object Request Broker (ORB). It combines the

power of mobile autonomous agents and remote method invocation with full CORBA support

and comes complete with distributed services such as directory, persistence, and publish

subscribe multicast. Voyager caters for both traditional and agent-enhanced distributed

programming techniques.

Voyager uses regular Java message syntax to construct remote objects, send them messages, and

move them between applications. Voyager allows agents to move themselves and continue

executing as they move. In this way, agents can act independently on the behalf of a client, even

if the client is disconnected or unavailable.

Conclusion
The Voyager platform would be recommended for any system that requires an agent toolkit,

which provides a reliable, easy to use communication substrate. Voyager is a set of Java class

libraries and server programs that provide - in a simple and straightforward way - a tremendously

 372

rich and flexible foundation for all sorts of distributed computing applications, including agent

system s. W h at V o yager w ill do fo r develop m ent w ork is ―take the strain ‖ o ut o f o b ject

distribution, remote messaging, and routing and distributed events. This allows the developer to

concentrate on agent functionality rather than how it will be distributed. In fact, the developer can

make existing objects distributed without changing the original source code,

Voyager also comes bundles with ObjectSpaces Java Generic Libraries(JGL), one of the most

widely used and thoroughly tested Java APIs in the world, and has been licensed for inclusion in

almost every major Java IDE. It provides a set of Java classes for data processing which fully

optimise compile, network load, and execution times which along with a Native compiler should

help any distributed agent system be even better equipped to handle real-time or multiple signals.

Of the agent packages reviewed here, Voyager is by far the best platform for pure distributed

computing. It does not, however, have any support for KQML. Apart from this Voyager was

found to be easy to learn, beautifully constructed, intuitive and joy to use

FOR: Easy to use, powerful, pure Java. FIPA compliant. Highly flexible, well supported, fast and

free.

AGAINST: No KQML support, more of a communication platform. No inherent agent

support principles.

BOND Distributed Object System
Summary of Features
The Bond (URL27) distributed object system provides a message oriented middleware

environment for developing distributed applications. Bond uses the KQML language for object

communication. The message space of Bond is divided into sub-protocols. Closed set of

 373

messages that can be viewed as task oriented micro languages. Examples of sub-protocols are,

the property access, persistent storage access or security sub-protocols.

Bond objects can be extended with new sub-protocols by the means of probes. Probes

implement the functionality of a specific sub-protocol and are attached as dynamic properties to

the given Bond object. A special class, called pre-emptive probes process the message before it is

delivered to the object, so they can act as filters for security, accounting or logging purposes. For

example, servers can be implemented without concern for accounting or monitoring. These

aspects can be added as probes during runtime.

Bond executables usually run as threads in the runtime environment provided by a resident. The

resident provides the messaging thread and the local directory service for the running

executables. Although the Bond programs can run in standalone mode, they can be more

efficiently used by grouping them in a domain. A domain contains a number of core servers such

as the directory server, persistent storage server, authentication server and the monitoring agent.

The agent framework of the Bond system simplifies the task of developing agents by allowing the

programmer to concentrate on the specific strategies of a new agent. Bond agents have the

intrinsic capability to be controlled remotely and to co-operate with each other. The task of an

application programmer is limited to specify the agenda, the finite state machine of the agent, and

the strategies associated with each state.

Bond agents can be specified b y their ―b lueprint‖. T h e b lueprint is not a full-featured

programming language: the various aspects of agent strategies have still to be programmed in

Java. However, the database of ready-made strategies allows the most common aspects of the

agents to be assembled from the strategy database without the need of programming. The

blueprint provides the assembly instructions of the agent, which are used by the

bondAgentFactory object to assemble the agent during runtime. The blueprint of an agent

implicitly defines its control sub-protocol, which can be used by an external object to control the

agent.

 374

The Bond system is currently under implementation at the Bond Lab at Computer Science

Department of Purdue University. A beta version is planned for late January 1999.

Conclusion
The BOND agent system looks very promising indeed and could offer the agent developer a very

attractive option. This looks like the nearest rival to AgentBuilder. However the BOND tool is

very new and the author was unable due to time constraints to look in depth, or indeed even try

the very early Alpha version). For further details please read (URL28).

Other Agent Toolkits.
Introduction
This section details some of the other available toolkits for general information purposes. Few of

those described below are flexible enough (most adhere strictly to their own architecture) to be

adapted to a generic agent architecture.

AARIA Agent
AARIA(URL29) agents aim to decentralise manufacturing systems by connecting, via agents,

various distributed aspects of the manufacturing system. The MES functionality includes basic

―w h at-if‖ sim ulation, fin ite cap acity sch edulin g, an d in telligent shop floo r interfaces. T h e E R P

functionality includes basic planning, order entry, purchasing, bill-of-materials management,

inventory management, resource management, personnel management, integrated financials, and

reporting.

AARIA is designed to dialog with customers and suppliers and allocate resources to new jobs as

they enter the system, to optimise schedules across resources, to recover from faults in the

factory, to dispatch work against the schedule, and to report results. It is designed to exhibit this

function ality either w hen runn in g an actual factory or w hen in a sim ulation o r ―w hat-if‖ m ode.

 375

The Agent Building Shell
The Agent Building Shell (URL30) provides several reusable layers of languages and services for

building agent systems: co-ordination and communication languages, description logic based

knowledge management, co-operative information distribution, and organisation modelling and

conflict management. This approach is being applied in the area of manufacturing enterprise

supply chain integration.

Echelon
Echelon (URL31) has made an architecture for developers who want to build communications

and intelligence into their products that sense, monitor, or control. Nodes, or intelligent control

devices, communicate with one another and can perform necessary control functions.

InteRRaP
InterRRaP (URL32) is a layered architecture that has been designed to model autonomously

interacting agents. It is meant for designing complex dynamic agent societies for scheduling

applications and for robotics. It defines agents by how actions are defined from the agents

perception and mental model, belief revision and abstraction, situation recognition, goal

activation, and scheduling perspectives. It is available on UNIX only.

 376

APPENDIX C: USABILITY RESULTS

Results Of The Workshops
Quantitative results
Genoa Workshop

This section reports the cumulated results derived from the forms filled by the participants to the

two workshops held in Genoa in Elsag and in ENEL respectively.

Interview
Question 1 2 3 4 5 6 M Comments
Part 1 4.9
Display of information 5.2

Which is your overal impression of the
system? (1) 5 3 4 6 7 5 Idea is good, but excessive

automation should be avoided
Do you think the system provides
information about the process state in a
good way? (2)

6 5 5 6 7 5.8 A n ―operator guide‖ should be
available

Are important parameters emphasised in the
interface? (2) 5 4 5 5 7 5.2

Does too much information exist in the
display? (2) 5 6 3 3 4 4.2 Information amount should depend

on the process and adapt to it

Is the most important information easy to
find? (3) 6 2 5 7 7 5.4 An option to stop the sequencing of

information should be available

Is the amount of information sufficient? (3) 6 5 6 6 4 5.4 Depends on the complexity of the
network

Do you find the way of presenting the
information logical? (3) 5 6 4 5 7 5.4 Generally yes

Effectiveness 4.2
Is it possible to carry out tasks easy and
logically? (3) 4 2 - 6 6 4.5

Are you able to carry out your tasks
efficiently when using the system? (4) 4 3 - 7 - 4.7

Is it easy to prevent errors? (5) 4 2 - 4 - 3.3
Efficiency 5.5
Does the system provide you with a good
overview of the process? (6) 4 3 6 5 7 5 Not enough information to give an

assessment
Do you find the information you need to
work in the system? (3) - 5 6 6 7 6 Not enough information to give an

assessment
Is the amount of information sufficient? (3) 5 4 6 6 7 5.6 Not enough information to give an

 377

assessment
Is the Interface Pleasing to Use 4.9
Do you like working with the system? (6) 4 4 5 5 - 4.5 Non applicable
Do you like the way information is
presented? (6) 5 3 6 7 5 5.2 Not enough information to give an

assessment
Do you find the system pleasing to interact
with? (6) 6 3 - 6 - 5 Not enough information to give an

assessment

Do you feel in control of the system? (6) 4 4 - 6 - 4.7 Not enough information to give an
assessment

How easy is it to learn to work with the
system? (3) 5 5 6 4 - 5

Is the information presented supporting
your main tasks? (3) 5 5 6 4 - 5

Part 2 5.2
Alarms 5.2
How easy is it to diagnose faults by using
alarms? (3) 5 5 6 6 6 5.6

Is the alarm system making you attentive
when deviations occurs in the system? (3) 5 5 6 7 6 5.8

Does the alarm system provide sufficient
information on the priority and cause of the
deviation? (3)

4 2 6 6 7 5

Are the feedback you get from the alarms
helping you to decide if you carried out the
right action? (3)

4 2 - 4 - 3.3 It depends on the experience of the
operator

Are the alarms presented consistent with
other information on the screens? (7) 5 3 6 6 6 5.2

How do you evaluate presentation of
alarms? (3) 3 2 6 6 6 4.6

Is the alarm text understandable? (3) - 2 6 7 1 4

Are the alarms organised so that natural
relationships between alarms are shown? (3) - 6 7 7 6 6.5

Is vocal input/output helpful? (3) - 6 7 7 6 6.5
Do you believe that multimedia are a good
support fro the network control? (3) - 6 7 7 6 6.5 Some people believes too expensive

(1) Very Bad – very good (2) False – True (3) No – Yes (4) Very little– A lot (5) Very difficult – very easy (6)
Little – Much (7) Bad – good

 378

The evaluation checklist
1 = never 2 = sometimes 3 = almost always 4 = always

Question 1 2 3 4 5 6 M Comments
Section 1: Clarity of the representation 3.1

1. Is important information highlighted on the
screen? - 3 3 3 - 3

2. Does information appear to be organized logically
on the screen? 3 3 3 3 - 3

3. Are bright or light colors displayed on a dark
background and vice versa? 4 1 3 4 - 3

4. Does the use of colour help to make the displays
clear? 4 3 2 4 4 3.4

5. Where colour is used, will all aspects of the display
be easy to see if used on a monochrome or low-
resolution screen or if the user is colour blind?

3 2 4 4 - 3.3

6. Is the information on the screen easy to see and
read? 3 2 2 3 - 2.5

7. Does the screen appear uncluttered? - - 3 4 3 3.3
8. Are schematic and pictorial displays clearly drawn
and annotated? 3 2 3 4 - 3

9. Is it easy to find the required information on a
screen? 3 2 3 4 - 3

10. Are voice messages useful and clear? 3 2 3 4 - 3
11. Do vocal commands help in fulfilling the task?
12. It is easy to interact with the system using vocal
command? 3 3 4 4 4 3.6

Section 2 Functionality 3.2
1. Is the way in which information is presented
appropriate for the tasks? 4 3 4 3 3 3.4

2. Does each screen contain all the information that
the evaluator feels is relevant to the task? 3 3 3 4 4 3.4

5. Is system feedback appropriate for the task? 3 3 - 4 - 3.3
6. Does the system help the evaluator to understand
the state of the process? 4 3 - 4 4 3.8

7. Does the system support the evaluator in feeling in
control of the process? 4 2 2 4 4 3.2

8. Does the nature of adaptation ensure that the
evaluator is warned of a process disturbance in time? 4 3 3 3 2 3

9. Are the adaptation strategies consequent? 4 3 3 3 2 3
10. Is the media chosen for adaptation appropriate? 4 3 3 4 3 3.4
11.Are the voice media effective? 3 3 2 4 - 3
11. D oes the system decrease the users‘ w orkload?
13. Is vocal information appropriate?
14. Does the system ensure that important
information is presented for the evaluator at
appropriate times?

3 2 2 4 - 2.8

Section 3: Alarms and error messages 3.1
1. Does the system clearly warn the evaluator about a
disturbance or a deviation from a normal situation? 3 2 3 4 4 3.2

 379

Question 1 2 3 4 5 6 M Comments
2. Is the alarm of such a nature that it interrupts the
evaluator from what he is doing? 2 3 1 3 4 2.6

3. Is a normal situation indicated by the absence of
colours and sounds that demand attention? 4 4 4 4 4 4

4. Is the system designed so that alarms that demand
immediate attention are presented in a way that they
are perceived and understood in all situations,
including situations with a high degree of
disturbance?

3 1 4 4 4 3.2

3. Is a normal situation indicated by the absence of
colours and sounds that demand attention? 3 3 2 4 2 2.8

9. Are voice alarms helpful to call for operator
attention? 4 3 2 4 1 2.8

6. Can audible alarms be heard despite background-
sound?

8. Are voice commands helpful in carrying out
parallel activities

7. Does the system provide the possibility of turning
an alarm sound off from several places in the control
room?

5. In the alarm display, is there enough space to show
all high priority alarms at the same time?

Section 4: Information Feedback 3
1. Are instructions and messages displayed by the
system concise and positive? 4 4 4 4 - 4

2. Are messages displayed by the system relevant?
3. Do instructions and prompts clearly indicate what
to do? 3 2 3 4 - 3

4. Is it clear what actions the user can take at any
stage? 3 2 3 3 - 2.8

5. Are status messages informative?
6. Does the system clearly inform the user when it
completes a requested action? 3 2 4 4 - 3.3

7. Does the system promptly inform the user of any
delay, m aking it clear that the user‘s input or request
is being processed?

9. Is it clear to the user what should be done to
correct an error? 4 2 3 4 - 3.3

10. Do alarm messages inform the evaluator about
the priority and nature of the deviation? 3 1 4 4 - 3

11. D o alarm m essages guide the evaluators‘ initial
actions? 2 1 3 3 - 2.3

12. D o alarm m essages verify w hether the evaluator‘s
response corrected the deviation? 2 1 1 4 - 2

Section 5: Consistency 3
1. Are the different colours used consistently
throughout the system? 3 2 3 3 - 2.8

3. Are icons, symbols, graphical representations and
other pictorial information used consistently 3 3 3 4 - 3.3

 380

Question 1 2 3 4 5 6 M Comments
throughout the system?
4. Is the same type of information displayed

a) In the same location on the screen?
b) In the same layout?

3 3 3 4 - 3.3

5. Is the same item of information displayed in the
same format, wherever it appears?

6. Is the format in which the user should enter
particular types of information on the screen
consistent throughout the system?

8. Is the method of selecting options consistent
throughout the system? - 2 2 4 - 2.7

Section 6: Compatibility 3
1. Are colours assigned according to conventional
associations where these are important? (e.g. red =
alarm, stop)

4 3 3 4 - 3.5

2. When abbreviations, acronyms, codes and other
alphanumeric information are displayed, are they easy
to recognize and understand? 4 1 2 3 - 2.5

7. Does the organization and structure of the system
fit the user‘s perception of the task? 3 2 2 4 4 3

8. Does the sequence of activities required to
complete a task follow what the user would expect? 3 2 - 4 - 3

9. Does the system work in the way the user thinks it
should work? 4 2 3 3 4 3.2

10. Does the system support the evaluator so that the
probability of conducting errors is minimized? 3 3 2 3 3 2.8

11. Does the system support the evaluator in carrying
out tasks correctly and efficiently? 4 3 3 4 3 3.4

 381

1 = many problems 2 = minor problems 3 = no problem
Question 1 2 3 4 5 6 M Comments
Section 7: Usability problems 2.8
1. Working out how to use the system 3 2 3 4 3 3
2. Understanding how to carry out the tasks 3 1 3 4 3 2.8
4. Finding the information you want 2 1 2 4 3 2.4
5. Too many colours on the screen 3 2 3 4 3 3
6. An inflexible, rigid system structure 3 2 3 4 3 3
10. Unexpected actions by the system 3 2 3 3 3 2.8
11. An input device which is difficult or awkward
to use 3 3 3 4 3 3.2

8. Having to remember too much information
while carrying out a task 2 1 3 4 1 2.2

 382

1 = Very unsatisfactory 2 = fairly unsatisfactory 3 = neutral
4 = fairly satisfactory 5 = very satisfactory

Questions 1 2 3 4 5 6 M Comments
Section 1: Clarity of the representation
How do you assess the system?? 4 4 - 5 4 4.3
Section 2: Functionality
How do you appraise the system in terms of
functionality 5 4 - 5 4 4.5

Section 3: Alarms and error messages
How do you estimate the system in terms of
alarm and messages presentation? 4 3 - 5 4 4

Section 4: Feedback
How do you assess the system in terms of
feedback 4 2 - 5 - 3.7

Section 5: Consistency
How do you assess the system in terms of
consistency? 4 3 - 5 - 4

Section 6: Compatibility
Which is the level of compatibility of the
system? 5 4 - 5 4 4.5

Section 7: Usability problems
How do you evaluate the system usability? - - - - - -

Average = 4.2

General questions

Questions Replies

Which are the best aspects of the
system?

 The capability to exploit multimediality to display information
 Use of vocal commands can be of some help.
 The possibility to focus on the solution of a problem without worrying to

look for the specific information.
 The capability to interact simultaneously via manual and vocal input
 The optimal spatial reorganization of the display
 Graphic interface and autoadaptivity
 Alarm priority pointed out by colours

Which are the worst aspects of
the system?

 Difficult to say without an actual AMEBICA console
 Iconic presentation of the alarms might be useful (instead of alarm lists)
 Maybe the excessive level of intrusion of the system
 Colour assignment might be changed

Which improvement do you
suggest?

 Multimedia features might be confusing for some operators
 Some operators don‘t w ant an excessive reduction of inform ation.

Experienced operator may wish to have al the information at a glance (especially in
some instances: relay protection for instance).

 Autoadaptivity should be customisable for each operator

 383

What do you like to add?
 All functionalities are enough covered
 Include a Context sensitive HELP function.
 capability to export information to field maintenance crews

ENEL Workshop in Genoa
Results from the Questionnaires

Assessment

Question
1 2 3 4 5 6 M S/N

S/N # S/N # S/N # S/N # S/N # S/N # S N X

Announcements and notification 3.8

Recognize alarms 4 S 4 S 4 S 4 3

Aware of the storm 3 N 4 S 3 N 3.3 1 2

Vocal input 4 S 4 S 4 S 4 3

Vocal output 4 S 4 S 4 S 4 3

Critical Task Completion 4.2
Track the storm
movement 3 N 4 S 3 N 3.3 1 2

Focus on critical
alarms 5 S 5 S 5 S 5 3

Establish priorities 4 N 5 S 5 S 4.6 2 1
Verbal command
recognition 3 N 5 S 3 N 3.6 1 2

Stabilisation 3.3
Stabilise the crisis
situation 3 N 4 S 3 N 3.3 1 2

Restore to a normal
state 3 N 4 S 3 N 3.3 1 2

 384

INTERVIEW
Question 1 2 3 4 5 6 M Comments
Part 1 5.8
Display of information 6.0
Which is your
overal impression
of the system? (1)

6 6 6 6

Do you think the
system provides
information about
the process state in
a good way? (2)

7 6 6 6.3

Does too much
information exist in
the display? (2)

4 6 5 5

Is the amount of
information
sufficient? (2)

6 6 6 6

Is the most
important
information easy to
find? (3)

5 6 5 5.3

Do you find the
way of presenting
the information
logical? (3)

6 6 6 6

Is information
presented in a
logical
arrangement? (3)

7 7 7 7

Effectiveness 5.2
Is it possible to
carry out tasks easy
and logically? (3)

4 6 5 5

Are you able to
carry out your tasks
efficiently when
using the system? (4)

6 6 6 6

Is it easy to prevent
errors? (5) 4 6 4 4.7

Does the system
provide you with a
good overview of
the process? (6)

6 6 6 6

Do you find the
information you
need to work in the
system? (3)

7 6 6 6.3

Is the amount of 6 6 6 6

 385

Question 1 2 3 4 5 6 M Comments
information
sufficient? (3)
Subjectively pleasing 5.9
Do you like
working with the
system? (6)

5 6 5 5.3

Do you like the
way information is
presented? (6)

6 6 6 6

Do you find the
system pleasing to
interact with? (6)

6 6 6 6

Do you feel in
control of the
system? (6)

6 6 6 6

Is the information
presented
supporting your
main tasks? (3)

How easy is it to
learn to work with
the system? (3)

6 6 6 6

 386

Question 1 2 3 4 5 6 M Comments
Part 2 5.6
Alarms 5.6
How easy is it to
diagnose faults by
using alarms? (3)

7 6 6 6.3

Is the alarm system
making you
attentive when
deviations occurs in
the system? (3)

7 6 6 6.3

Does the alarm
system provide
sufficient
information on the
priority and cause
of the deviation? (3)

4 4 5 4.3

Are the feedback
you get from the
alarms helping you
to decide if you
carried out the right
action? (3)

6 5 5 5.3

Are the alarms
presented
consistent with
other information
on the screens? (7)

5 5 6 5.3

How do you
evaluate
presentation of
alarms? (3)

6 5 6 5.7

Is the alarm text
understandable? (3) 6 5 4 5

Is vocal
input/output
helpful? (3)

5 6 4 5

Do you believe that
multimedia are a
good support fro
the network
control? (3)

7 7 6 6.7

(1) Very Bad – very good (2) False – True (3) No – Yes (4) Very little– A lot (5) Very difficult – very easy
(6) Little – Much (7) Bad – good

 387

The evaluation checklist
1 = never 2 = some times 3 = often 4 = always

Question 1 2 3 4 5 6 M Comments
Section 1: Clarity of the representation 3.2

1. Is important information highlighted on the
screen? 3 4 3 3.3

2. Does information appear to be organized
logically on the screen? 3 4 3 3.3

3. Are bright or light colours displayed on a dark
background and vice versa? 3 4 3 3.3 subjective

4. Does the use of colour help to make the
displays clear? 4 4 4 4

5. Where colour is used, will all aspects of the
display be easy to see if used on a monochrome
or low-resolution screen or if the user is colour
blind?

3 3 3 3

6. Is the information on the screen easy to see
and read? 3 3 3 3

9. Is it easy to find the required information on a
screen? 3 3 3 3

10. Are voice messages useful and clear? 2 4 2 2.7
12. It is easy to interact with the system using
vocal command?

11. Do vocal commands help in fulfilling the
task? 2 4 3 3

Section 2 Functionality 2.7
1. Is the way in which information is presented
appropriate for the tasks? 3 4 3 3.3

2. Does each screen contain all the information
that the evaluator feels is relevant to the task? 2 4 2 2.7 Often to much

5. Is system feedback appropriate for the task? 3 3 3 3
6. Does the system help the evaluator to
understand the state of the process? 2 3 2 2.3

8. Does the nature of adaptation ensure that the
evaluator is warned of a process disturbance in
time?

3 4 2 3

9. Are the adaptation strategies consequent? 2 3 3 2.7 Integration with
ENEL procedures required

10. Is the media chosen for adaptation
appropriate? 2 4 3 3

11.Are the voice media effective? 2 3 2 2.3
11. D oes the system decrease the users‘
workload? 2 - 3 2.5 Difficult, but it

would improve efficiency

14. Does the system ensure that important
information is presented for the evaluator at
appropriate times?

 388

Question 1 2 3 4 5 6 M Comments
13. Is vocal information appropriate?

2 3 2 2.3
 to be improved, but

in com pliance w ith E N E L ‘s
requirements

Section 3: Alarms and error messages 3.4
1. Does the system clearly warn the evaluator
about a disturbance or a deviation from a
normal situation?

4 4 3 3.7

2. Is the alarm of such a importance that it
interrupts the evaluator from its work? 4 - 3 3.5

3. Is a normal situation indicated by the absence
of colours and sounds that demand attention? 4 4 4 4

4. Is the system designed so that alarms that
demand immediate attention are presented in a
way that they are perceived and understood in all
situations, including situations with a high degree
of disturbance?

3 3 3 3

3. Is a normal situation indicated by the absence
of colours and sounds that demand attention? 2 4 3 3

9. Are voice alarms helpful to call for operator
attention?

6. Can audible alarms be heard despite
background-sound?

7. Does the system provide the possibility of
turning an alarm sound off from several places
in the control room?

5. In the alarm display, is there enough space to
show all high priority alarms at the same time?

8. Are voice commands helpful in carrying out
parallel activities 2 4 4 3.3 Only in conjunction

with other methods

Section 4: Information Feedback 2.7
1. Are instructions and messages displayed by
the system concise and positive? - 4 3 3.5

2. Are messages displayed by the system
relevant? 2 3 2 2.3

3. Do instructions and prompts clearly indicate
what to do? 3 3 2 2.7

4. Is it clear what actions the user can take at any
stage? 4 3 3 3.3

5. Are status messages informative? 3 3 2 2.7

 389

Question 1 2 3 4 5 6 M Comments
6. Does the system clearly inform the user when
it completes a requested action? 3 3 3 3

7. Does the system promptly inform the user of
any delay, m aking it clear that the user‘s input or
request is being processed?

2 3 3 2.7

9. Is it clear to the user what should be done to
correct an error?

10. Do alarm messages inform the evaluator
about the priority and nature of the deviation?

11. D o alarm m essages guide the evaluators‘
initial actions?

12. Do alarm messages verify whether the
evaluator‘s response corrected the deviation? 2 3 1 2

Section 5: Consistency 3
1. Are the different colours used consistently
throughout the system? 3 3 3 3

3. Are icons, symbols, graphical representations
and other pictorial information used consistently
throughout the system?

3 3 3 3

4. Is the same type of information displayed
b) In the same location on the screen?

b) In the same layout?
2 3 3 2.7

5. Is the same item of information displayed in
the same format, wherever it appears?

6. Is the format in which the user should enter
particular types of information on the screen
consistent throughout the system?

8. Is the method of selecting options consistent
throughout the system?

Section 6: Compatibility 2.8
1. Are colours assigned according to
conventional associations where these are
important? (e.g. red = alarm, stop)

3 3 3 3

2. When abbreviations, acronyms, codes and
other alphanumeric information are displayed,
are they easy to recognize and understand?

3 3 2 2.7
 With the manual
 On Line HELP

would be useful
7. Does the organization and structure of the
system fit the user‘s perception of the task? 3 3 3 3

8. Does the sequence of activities required to
complete a task follow what the user would
expect?

3 2 3 2.7 Integration with
ENEL required

9. Does the system work in the way the user
thinks it should work? 3 3 2 2.7

10. Does the system support the evaluator so
that the probability of conducting errors is
minimized?

3 3 2 2.7

11. Does the system support the evaluator in
carrying out tasks correctly and efficiently? 3 3 2 2.7

 390

1 = many problems 2 = minor problems 3 = no problem
Question 1 2 3 4 5 6 M Comments
Section 7: Usability problems 3
1. Working out how to use the system 3 3 3 3
2. Understanding how to carry out the tasks 3 3 3 3

4. Finding the information you want 4 3 3 3.3
5. Too many colours on the screen 3 3 3 3
6. An inflexible, rigid system structure 3 3 3 3
10. Unexpected actions by the system 2 3 3 2.7

11. An input device which is difficult or
awkward to use 4 3 3 3.3

8. Having to remember too much information
while carrying out a task 3 3 3 3

 391

1 = Very unsatisfactory 2 = fairly unsatisfactory 3 = neutral
4 = fairly satisfactory 5 = very satisfactory

Questions 1 2 3 4 5 6 M Comments
Section 1: Clarity of the representation
How do you assess the system?? 4 4 4 4
Section 2: Functionality
How do you appraise the system in terms of
functionality 3 4 4 3.7

Section 3: Alarms and errors message
How do you estimate the system in terms of
alarm and messages presentation? 4 4 4 4

Section 4: Feedback
How do you assess the system in terms of
feedback 4 4 3 3.7

Section 5: Consistency
How do you assess the system in terms of
consistency? 4 4 4 4

Section 6: Compatibility
Which is the level of compatibility of the
system? 4 4 4 4

Section 7: Usability problems
How do you evaluate the system usability? - - - - - -

Average = 3.9

General questions

Question Replies

Which are the best aspects of the
system?

 Immediacy of alarms
 Multimediality as complement to autoadaptivity to support

operator
 Operator guide

Which are the worst aspects of
the system?

 No tool to include different procedure (on line)???
 Too much information in relation to the workload
 Sometime difficult to understand

Which improvement do you
suggest?

 Selective filtering of information
 Try to simplify the operating procedures
 Reduce effects
 Operator customisable
 Improved readability

What do you like to add?
 On line configuration of the AT network
 Possibility to trace the execution of standard ENEL command

procedures (for example load transfer)

 392

 4

